Effects of nitrogen deposition and fertilization on N transformations in forest soils: a review
Gao W. L.; Yang, H.; Kou, L.; Li, S. G.
2015
关键词DNRA N2O emission N deposition N transformations Soil acidification dissimilatory nitrate reduction atmospheric no3-deposition ammonia-oxidizing bacteria chilean nothofagus forest microbial biomass tropical forest n-15 tracer subtropical china oxide emissions grassland soil
英文摘要Understanding how process-specific nitrogen (N) transformations in natural forest soils are modified by N deposition and fertilization is critically important to gain mechanistic insights on the links between global N deposition and N enrichment and loss in forest soils. Here we identify the general characteristics and the main mechanisms of N deposition- and fertilization-induced modifications in multiple N transformations, including N immobilization, N mineralization, nitrification (autotrophic nitrification and heterotrophic nitrification), and denitrification, in forest soils by literature survey. Overall, N status, soil C/N ratios, C availability, and soil pH are key factors separately and/or interactively affecting the effects of N deposition and fertilization on forest soil N transformations. In the N-limited stage, N deposition and fertilization can act as a stimulator of N mineralization by removing microbial N limitation and reducing the C/N ratios of the substrate being decomposed. In the N-unlimited stage, N added to forest ecosystems can retard N mineralization, which may primarily be a result of decreased microbial activity due to soil acidification and low C availability. The changes in N mineralization may drive a corresponding change in N immobilization, autotrophic nitrification, and denitrification. Despite the fact that ammonia-oxidizing archaea (AOA) has a higher affinity than ammonia-oxidizers (AOB) for low-concentration ammonia (NH3), low NH3 availability may still limit the rate of ammonia oxidation (autotrophic nitrification) in acidic forest soils even in the case of high NH4 (+) input. Heterotrophic nitrification, however, may be favored if soil C/N ratios and pH decrease with N deposition and fertilization. The responses of denitrification and N2O emission to N deposition and fertilization in forests may be nonlinear, with a trend of stimulation in the short term but a decline over time, partly because soil pH has a contrast effect on denitrification capacity and N2O emission. There are various effects of N deposition and fertilization on forest soil N transformations; thus, their responses to N deposition are still not well characterized and understood. N deposition- and fertilization-induced modifications in soil N transformations have important implications for N enrichment, N loss, and soil acidification in forest ecosystems. In the future, more research is required to investigate on dissimilatory nitrate reduction to ammonium (DNRA) process and link microbial community characteristics and functions of microbial extracellular enzymes with these rate processes in forest soils to narrow the uncertainty in evaluating and predicting ecosystem responses to global N deposition.
出处Journal of Soils and Sediments
15
4
863-879
收录类别SCI
语种英语
ISSN号1439-0108
内容类型SCI/SSCI论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/38620]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Gao W. L.,Yang, H.,Kou, L.,et al. Effects of nitrogen deposition and fertilization on N transformations in forest soils: a review. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace