Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta
Han, Guangxuan1; Xing, Qinghui1; Yu, Junbao1; Luo, Yiqi2; Li, Dejun2; Yang, Liqiong1; Wang, Guangmei1; Mao, Peili1; Xie, Baohua1; Mikle, Nate2
刊名AGRICULTURE ECOSYSTEMS & ENVIRONMENT
2014-10-15
卷号196页码:187-198
关键词Eddy covariance Ecosystem CO2 exchange Coastal wetlands Agricultural reclamation Yellow River Delta
ISSN号0167-8809
通讯作者Yu, JB (reprint author), Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Zone Environm Proc & Ecol Remedia, Yantai 264003, Shandong, Peoples R China. gxhan@yic.ac.cn ; jbyu@yic.ac.cn
产权排序[Han, Guangxuan; Xing, Qinghui; Yu, Junbao; Yang, Liqiong; Wang, Guangmei; Mao, Peili; Xie, Baohua] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Zone Environm Proc & Ecol Remedia, Yantai 264003, Shandong, Peoples R China; [Luo, Yiqi; Li, Dejun; Mikle, Nate] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA
中文摘要Little is known about the impacts of agricultural exploitation of coastal wetlands on ecosystem CO2 exchange, although coastal wetlands have been widely reclaimed for agricultural use across the world. We measured net ecosystem CO2 exchange (NEE) and its major components, gross primary production (GPP) and ecosystem respiration (R-eco) using an eddy covariance flux technique in a natural coastal wetland (reed) and an adjacent, newly reclaimed farmland (cotton) in the Yellow River Delta, China. The results showed that agricultural reclamation changed the ecosystem CO2 exchange of the coastal wetland at three distinct levels. Initially, the conversion from the wetland to farmland changed the light response parameters (alpha, A(max), and R-eco, day) of NEE and temperature sensitivity (Q(10)) of R-eco mainly by changing the dominant vegetation type. Over the growing season, NEE, R-eco and GPP were significantly correlated with LAI at both sites and aboveground biomass at the farmland site. Next, the reclamation of wetland modified the diurnal and seasonal dynamics of ecosystem CO2 exchange. Significant differences in diurnal variations of NEE between the wetland and farmland sites were found during the growing season (with the exception of June and July). Seasonal means of daily GPP and R-eco values at the wetland site were higher than those at the farmland. Ultimately, the agricultural reclamation altered the CO2 sequestration capacity of the coastal wetland. The cumulative NEE in the wetland (-237.4 g Cm-2) was higher than that in the farmland (-202.0 g Cm-2). When biomass removal was taken into account, the farmland was a strong source for CO2 of around 131.9 g Cm-2 during the growing season. Overall, land use changes by reclamation altered ecosystem CO2 exchange at several ecological scales by changing the dominant vegetation type and altering the ecosystem's natural development. (C) 2013 Elsevier B.V. All rights reserved.
英文摘要Little is known about the impacts of agricultural exploitation of coastal wetlands on ecosystem CO2 exchange, although coastal wetlands have been widely reclaimed for agricultural use across the world. We measured net ecosystem CO2 exchange (NEE) and its major components, gross primary production (GPP) and ecosystem respiration (R-eco) using an eddy covariance flux technique in a natural coastal wetland (reed) and an adjacent, newly reclaimed farmland (cotton) in the Yellow River Delta, China. The results showed that agricultural reclamation changed the ecosystem CO2 exchange of the coastal wetland at three distinct levels. Initially, the conversion from the wetland to farmland changed the light response parameters (alpha, A(max), and R-eco, day) of NEE and temperature sensitivity (Q(10)) of R-eco mainly by changing the dominant vegetation type. Over the growing season, NEE, R-eco and GPP were significantly correlated with LAI at both sites and aboveground biomass at the farmland site. Next, the reclamation of wetland modified the diurnal and seasonal dynamics of ecosystem CO2 exchange. Significant differences in diurnal variations of NEE between the wetland and farmland sites were found during the growing season (with the exception of June and July). Seasonal means of daily GPP and R-eco values at the wetland site were higher than those at the farmland. Ultimately, the agricultural reclamation altered the CO2 sequestration capacity of the coastal wetland. The cumulative NEE in the wetland (-237.4 g Cm-2) was higher than that in the farmland (-202.0 g Cm-2). When biomass removal was taken into account, the farmland was a strong source for CO2 of around 131.9 g Cm-2 during the growing season. Overall, land use changes by reclamation altered ecosystem CO2 exchange at several ecological scales by changing the dominant vegetation type and altering the ecosystem's natural development. (C) 2013 Elsevier B.V. All rights reserved.
学科主题Agriculture, Multidisciplinary; Ecology; Environmental Sciences
研究领域[WOS]Agriculture ; Environmental Sciences & Ecology
关键词[WOS]CARBON-DIOXIDE EXCHANGE ; QINGHAI-TIBETAN PLATEAU ; LAND-USE CHANGE ; GRASSLAND ECOSYSTEMS ; SEASONAL-VARIATION ; INNER-MONGOLIA ; WATER WETLAND ; SOIL ; CHINA ; VARIABILITY
收录类别SCI
语种英语
WOS记录号WOS:000343019000023
内容类型期刊论文
源URL[http://ir.yic.ac.cn/handle/133337/8701]  
专题烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室
烟台海岸带研究所_滨海湿地实验室
作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Zone Environm Proc & Ecol Remedia, Yantai 264003, Shandong, Peoples R China
2.Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA
推荐引用方式
GB/T 7714
Han, Guangxuan,Xing, Qinghui,Yu, Junbao,et al. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta[J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT,2014,196:187-198.
APA Han, Guangxuan.,Xing, Qinghui.,Yu, Junbao.,Luo, Yiqi.,Li, Dejun.,...&Mikle, Nate.(2014).Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta.AGRICULTURE ECOSYSTEMS & ENVIRONMENT,196,187-198.
MLA Han, Guangxuan,et al."Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta".AGRICULTURE ECOSYSTEMS & ENVIRONMENT 196(2014):187-198.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace