题名环渤海地区持久性有机污染物空间多介质迁移模拟
作者刘世杰
学位类别博士
答辩日期2014-05
授予单位中国科学院研究生院
授予地点北京
导师吕永龙
关键词逸度 BETR模型 苯并[a]芘(BaP) 全氟辛烷磺酸(PFOS) 软件开发 Fugacity BETR model Benzo[a]pyrene (BaP) Perfluorooctane sulfonate (PFOS) Software development
其他题名Simulation of Spatial Explicit Multimedia Fate of POPs in Bohai Rim
学位专业环境科学
中文摘要      利用空间多介质模型模拟分析区域内持久性有机污染物(Persistent  Organic Pollutants,POPs)的分布和迁移状况,是进行 POPs生态风险评价研究的重要内 容,也是环境科学的重要前沿方向。本文以环渤海地区为研究区域,以苯并  [a]芘(BaP)和全氟辛烷磺酸(PFOS)为目标物质,基于逸度模型原理构建了区域尺度上的 POPs空间多介质迁移模型,收集了模型所需的化学品性质和环境参数数据,估算了其在环渤海地区的空间排放,在稳态条件下模拟其在环渤海地区大气、植被、淡水、淡水沉积物、海水和土壤中的浓度及迁移扩散特征,根据模型结果分析了污染物在环渤海地区的介质分配、相间及空间迁移过程,通过与实测值进行对比、参数敏感性分析及不确定性分析等方法对模型的可靠性进行验证,初步分析了其在环渤海地区的风险,最后对模型进行了重新设计和二次开发,使其具有图形化用户界面。
      根据排放估算的结果,2008年环渤海地区  BaP总排放量为  112.12吨,炼焦用煤、生物质燃烧和生活燃煤为排放最高的三类排放源,北京 -天津-唐山地区、沈阳-营口地区及济南-淄博-潍坊地区是研究区域内的三个高排放区域;根据模型结果,BaP的高浓度区主要分布在高排放及其周围一定范围内的区域;生物相中的 BaP浓度远高于其他环境介质,存在很高的人体健康风险;土壤中   BaP的储量占其在环境中总量的 94.53%,是 BaP在该地区环境中的最主要的“汇”;在相间迁移过程中,大气向其他环境介质的迁移是 BaP在该地区主要相间迁移过程;大气是环渤海地区 BaP入海和空间迁移的最主要驱动力,较大河流对于 BaP在环境中的迁移同样具有重要贡献;与平流过程相比,降解过程是环渤海地区  BaP从环境系统中移除的主要过程;模拟值与实测值浓度对比表明模型模拟效果较好,实测数据的代表性不足可能是造成部分区域模拟值和实测值产生差异的主要原因;上游区域的大量排放也可能导致模拟值整体偏低;参数敏感性分析结果表明,部分与  BaP排放速率、介质规模、迁移速率以及污染物持久性相关的参数是对模型结果影响最显著的敏感性参数;不确定性分析结果表明 BaP在大气和土壤中的浓度分布都符合对数正态分布,其变异系数分别为 0.46和  1.53。
      环渤海地区 PFOS四种排放场景下排放总量分别为  471.52 kg/a、542.09 kg/a、540.19 kg/a和  529.69 kg/a;淡水是 PFOS排放的主要受体;不同介质中  PFOS排放的空间分布基本类似,潍坊、青岛、北京、天津和大连的排放量明显高于其他地区;模型结果表明,高浓度地区主要包括高排放区域以及由于河流的传输作用导致的河流下游区域;场景 2中   PFOS浓度比其他场景略高,但差别并不显著;土壤是 PFOS在该地区环境中的最主要储库,占环境总储量的    52.96%;在土壤中 PFOS的三种来源中,直接排放是其在土壤中的主要来源;PFOS在淡水、淡水沉积物和海水中储量的比例比 BaP等典型  POPs相比要高出许多,水环境也是PFOS重要的“汇”;通过入海河流的传输是该地区海水中  PFOS的主要输入途径;水是环渤海地区中 PFOS空间迁移的主要驱动力;与降解相比,平流流出是   PFOS
从环境中移除的主要途径;在仅考虑淡水流量季节性变化的条件下,冬、春两季淡水中 PFOS浓度较高,而夏、秋两季浓度较低,且  PFOS浓度季节性差异程度与河流总流量成负相关关系,这主要是受到河流水量稀释作用的影响;与  PFOS在淡水中浓度季节性变化趋势相反,PFOS入海通量在夏、秋两季较高,而在冬、春两季较低,水量的增加导致河流对 PFOS整体运移量的增加;对研究区域   PFOS淡水中暴露风险的分析表明,整体来讲目前环渤海地区 PFOS淡水中的  PFOS暴露的生态风险较低,但部分地区河流水量的季节性变化很有可能会引起河流中PFOS浓度的显著升高,并有一定的生态风险。模型模拟值和实测值基本处于同一浓度区间内,吻合较好,但由于化学品性质数据和排放估算的不确定性、模型
中对部分小河的忽略以及沿海工业源直接排放入海所导致的对排放的高估等原因,模型模拟值与实测值相比整体略偏高。
      基于一致性、标准化和可拓展的原则,本研究对模型进行了重新设计和二次开发,使其成为一个有图形化用户界面的软件。软件主要功能包括对污染物空间多介质迁移进行静态和动态模拟、参数敏感性分析以及对结果进行空间展示,针对每种功能分别对软件界面进行了详细设计。
英文摘要      Simulating  the  distribution  and  fate  of  Persistent  Organic  Pollutants   (POPs) using  a   spatially  environmental   multimedia  fate   model  is   an  essential   step  in environmental risk assessment.  In this study, a  grid based multimedia fugacity  model on regional  scale was developed  for Bohai coastal  region, together with  case studies modeling the fate and transfer of Benzo[a]pyrene (BaP) and perfluorooctane sulfonate (PFOS). Physical-chemical properties of  chemicals and environmental characterastics were collected for the model.  Based on the estimated emissions, concentrations of the chemicals in air,  vegetation, soil, fresh  water, fresh water sediment  and coastal water as   well  as   the  transferfluxes   were   derived  under   the   steady-state  assumption. Inventories in multimedia  and tranferring processeses were analyzed according  to the model  results.  The  reliability  of  model  results  was  assessed   through  comparison between   the   measured    and   modeled   concentrations,   sensitivity    analysis   and uncertainty analysis. Preliminary risk  assessment was carried out for the  chemicals in Bohai  coastal  region.  The model  was  also  redesigned  and  redeveloped  to  have  a visualized user interface.
       The total BaP emssion in Bohai coastal region was estimated to be 112.12 tons in 2008. Coking coal  combustion, biomass burning and  domestic coal bombustion were major emission sources  of BaP. Emissions in  the region of Beijing-Tianjin-Tangshan, Shenyang-Yingkou  and  Jinan-Zibo-Weifang were  much  higher  than  those in  other regions. In  comparison, the spatial distribution  of BaP concentrations was  almost the
same as  that of  the emissions  with a  few diffusion  effect. Concentrations  of BaP in
biota were  much higher than  those in other environmental  compartments, which  had
the highest  risk to  human health. 95%  of the  total BaP amount  was found in  soil in
Bohai coastal  region, which implies  that soil  serves as the  predominant sink of  BaP.
Fluxes  from  air  to  other  compartments  were  major  pathways of  BaP  inter-media
transport. Most  of the  BaP entering  the sea  were transferred  by  airflow, which  was
also the crucial  driving force in the  spatial distribution processes of  BaP. The Yellow
River,  Liaohe   River  and   Daliao  River  played   an  important   role  in  the   spatial
transformation processes of  BaP. Compared with  advection outflow, degradation was
more  important in  removal  processes of  BaP.  The  model results  indicated  that the
predicted concentrations of BaP in air, fresh water,  soil and sediment generally agreed
with  field   observations.  The   individual  differences   between  model  outputs   and
measured data  could be  attributed to  the under-representation  of the  measured data.
The modeled concentrations were  generally lower than the observed  values, probably
due to the influence of emission  from the surrounding area. According to the result  of
sensitivity analysis,  emission rates,  compartment  dimensions, transport  velocity and
chemical persistence  were the most  influential parameters for  the model output.  The
distributions  of BaP  concentration  in  air  and soil  were  fitted  well with  lognormal
distributions, and the coefficients of variances (CVs) were 0.46 and 1.53, respectively.
The total emission of  PFOS in Bohai costal region  in 2010 were estimated to  be
471.52 kg/a, 542.09 kg/a, 540.19 kg/a and 529.69  kg/a for the four emission scenarios
separately, and fresh water was the main receptor of PFOS. Spatial distributions of the
emssions in different  scenarios were similar to  each other, and emisisons  in Weifang,
Qingdao,  Beijing, Tianjin  and  Dalian  were  significantly higher  that  those  in other
regions. The model  result showed that  regions with higher  PFOS concentration were
mainly distributed in  the regions with heavy  emission, and also extended  to estuaries
due to the transportation by river flow.  Concentrations of PFOS in scenario 1, 3 and  4
were basically  at the same  level, while those  in scenario  2 were slightly  higher than
the others.  52.96% of the  total amount  of PFOS accumulated  in soil,  which was the
most important sink  in Bohai coastal  region. Direct emission was  the main source  of
PFOS  in  soil. Compared  with  typical  POPs  such as  BaP,  much  more PFOS  were
stored  in  aquatic  envrionment. Flow  of  fresh  water  was  the  primary pathway  for
PFOS  to  enter  the  sea, and  also  the  most  important  driving  force  for  the  spatial
transportation of  PFOS. Advection was  the dominant removing  process for PFOS  in
environmental   system.  Given   the   seasonal   variance  of   fresh   water  flow   rate,
concentrations of  PFOS in winter  and spring  were higher than  those in  summer and autumn,  which  might  be  due to  the  dilution  effect  of  river  water.  The  degree  of
variance displayed  a  negative correlation  with the  total flow  rate of  fresh  water. In
contrast  to the  concentrations, fluxes  of  PFOS into  the sea  in  summer and  autumn
were  higher  than  those   in  winter  and  spring.  The  increase   of  fresh  water  flow
enhanced the overall transfer of PFOS. Generally, the ecological risk of PFOS in fresh
water  was  fairly  low  in  Bohai  coastal  region.   However,  the  risk  might  increase
significantly because of the  seasonal change of fresh water flow rate  in some regions.
The values  of modeled concentration  fell in the  same range of  measured data,  while
the model output  was slightly higher,  which might be attributed  to the uncertainty  of
model input,  consideration of  some rivers  in the model  and direct  emission into  the
sea from some industrial sources along the coast.
      With  consistency, standardization  and  extensibility,  the  model was  redesigned
and redeveloped into a user-friendly software. The softwater has three main functions,
including simulating the  fate of pollutants in  steady and dynamic state,  analyzing the
sensitivity  of model  input  and  displaying the  spatial  distribution  of  model results. Detailed design was carried out for each function of the software.
公开日期2015-07-07
内容类型学位论文
源URL[http://ir.rcees.ac.cn/handle/311016/15635]  
专题生态环境研究中心_城市与区域生态国家重点实验室
推荐引用方式
GB/T 7714
刘世杰. 环渤海地区持久性有机污染物空间多介质迁移模拟[D]. 北京. 中国科学院研究生院. 2014.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace