PUFA Biosynthesis Pathway in Marine Scallop Chlamys nobilis Reeve
Liu, Helu1,2,3; Zhang, Hongkuan1; Zheng, Huaiping1,2; Wang, Shuqi1; Guo, Zhicheng1; Zhang, Guofan4
刊名JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
2014-12-24
卷号62期号:51页码:12384-12391
关键词Chlamys nobilis PUFA biosynthesis Delta 8 pathway marine bivalve
通讯作者Zheng, HP (reprint author), Shantou Univ, Key Lab Marine Biotechnol Guangdong Prov, Shantou 515063, Peoples R China.
英文摘要Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential in important physiological processes. However, the endogenous PUFA biosynthesis pathway is poorly understood in marine bivalves. Previously, a fatty acyl desaturase (Fad) with ?5 activity was functionally characterized and an elongase termed Elovl2/5 was reported to efficiently elongate 18:2n-6 and 18:3n-3 to 20:2n-6 and 20:3n-3 respectively in Chlamys nobilis. In this study, another elongase and another Fad were identified. Functional characterization in recombinant yeast showed that the newly cloned elongase can elongate 20:4n-6 and 20:5n-3 to C22 and C24, while the newly cloned scallop Fad exhibited a ?8-desaturation activity, and could desaturate exogenously added PUFA 20:3n-3 and 20:2n-6 to 20:4n-3 and 20:3n-6 respectively, providing the first compelling evidence that noble scallop could de novo biosynthesize 20:5n-3 and 20:4n-6 from PUFA precursors though the "?8 pathway". No Delta 6 or Delta 4 activity was detected for this Fad. Searching against our scallop transcriptome database failed to find any other Fad-like genes, indicating that noble scallop might have limited ability to biosynthesize 22:6n-3. Interestingly, like previously characterized Elovl2/5, the two newly cloned genes showed less efficient activity toward n-3 PUFA substrates than their homologous n-6 substrates, resulting in a relatively low efficiency to biosynthesize n-3 PUFA, implying an adaption to marine environment.
学科主题Agriculture; Chemistry; Food Science & Technology
收录类别SCI
语种英语
WOS记录号WOS:000347138500014
内容类型期刊论文
源URL[http://ir.qdio.ac.cn/handle/337002/24240]  
专题海洋研究所_海洋生物技术研发中心
作者单位1.Shantou Univ, Key Lab Marine Biotechnol Guangdong Prov, Shantou 515063, Peoples R China
2.Mariculture Res Ctr Subtrop Shellfish & Algae, Dept Educ Guangdong Prov, Shantou 515063, Peoples R China
3.Chinese Acad Sci, Sanya Inst Deep Sea Sci & Engn, Sanya 572000, Peoples R China
4.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
推荐引用方式
GB/T 7714
Liu, Helu,Zhang, Hongkuan,Zheng, Huaiping,et al. PUFA Biosynthesis Pathway in Marine Scallop Chlamys nobilis Reeve[J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY,2014,62(51):12384-12391.
APA Liu, Helu,Zhang, Hongkuan,Zheng, Huaiping,Wang, Shuqi,Guo, Zhicheng,&Zhang, Guofan.(2014).PUFA Biosynthesis Pathway in Marine Scallop Chlamys nobilis Reeve.JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY,62(51),12384-12391.
MLA Liu, Helu,et al."PUFA Biosynthesis Pathway in Marine Scallop Chlamys nobilis Reeve".JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 62.51(2014):12384-12391.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace