题名微纳大规模集成电路SRAM的总剂量辐射损伤机理及评估方法研究
作者丛忠超
学位类别硕士
答辩日期2014-05-20
授予单位中国科学院大学
授予地点北京
导师余学峰
关键词SRAM 测试系统 辐照偏置 静态功耗电流 失效模式
学位专业微电子与固体电子学
中文摘要静态随机存储器(Static Random Access Memory)作为使用最广泛的存储器之一,具有功耗低、存取速度快等优点,因而被广泛应用于工业自动化、军事精密武器及航天器的控制系统等领域。然而,空间中的高能辐射粒子作用于SRAM会产生多种辐射效应,其中以总剂量辐射对SRAM的工作性能影响最为明显,这会严重威胁航天系统的可靠性和航天任务的顺利完成。 为了保证星用SRAM器件在空间辐射环境中的可靠性,本文对微纳大规模SRAM器件的总剂量辐射效应、损伤机理以及总剂量试验方法和评估技术进行了较深入细致的研究:建立了SRAM器件在线辐照、测试系统;开发了SRAM器件全参数离线测试技术;研究了基于上述软硬件基础之上的SRAM器件总剂量辐射损伤机理;建立了更全面、更详细的SRAM器件总剂量辐照试验方法和评估技术。 在线测试系统是以FPGA为核心开发的一套参数测试系统,其能够测试的参数有:静态功耗电流、动态功耗电流和存储单元翻转数,其电流测试精度最高可以达到几十纳安。在线辐照偏置系统可以在钴源内对SRAM施加信号激励和进行数据交换,在保证信号完整性的前提下,其最高工作频率可达20MHz。而离线测试是通过Adwantest 93000大规模集成电路测试机台来实现的,通过软件及测试程序的开发,使其能够对SRAM进行全参数测试和复杂的功能测试,其参数测试精度可达±10mV和±100uA。 SRAM器件的总剂量辐射效应和损伤机理研究结果表明:SRAM的静态功耗电流和动态功耗电流随总剂量上升幅度最明显,最大可达初始值的几百倍以上,而其他直流参数也存在小幅度的变化;SRAM器件在总剂量辐射环境下主要存在两种功能失效模式,即:存储单元失效和外围电路失效;在同等条件下,离线测试无论在电流参数测试、存储单元翻转和功能测试方面都比在线测试更准确、更严格;对辐照后的SRAM进行电流参数测试,当使用的测试数据不同时,得到的测试结果存在巨大差异,最大可以达到几十毫安;虽然静态功耗电流随总剂量变化最为剧烈,但并不能说明在SRAM的总剂量辐照评估中可以只对静态功耗电流这一直流参数进行测试,其它电参数虽然随总剂量的变化幅度较小,但仍有先于静态功耗电流参数失效的可能性;辐照过程中,在动态读写和静态数据保存两种偏置条件下,SRAM器件的总剂量辐射损伤并没有表现出明显差异;在总剂量辐射环境中,器件处于不同的工作频率时所受到的总剂量辐射损伤存在较大差异,并且工作频率越高其总剂量辐射损伤越严重。 在总剂量辐射环境中,通过多种实验方法和测试方法对SRAM器件的总剂量辐射损伤和评估方法进行了深入的研究。全方位的考虑了辐照条件和测试条件对实验结果的影响,最终确定了一个全面的SRAM器件总剂量辐射损伤评估方法。
英文摘要
SRAM (Static Random Access Memory), as one of the most widely used memory, is extensively used in the fields of industrial automation, military precision weapons and spacecraft control systems with the advantages of low power consumption, quick data access, etc. However, high-energy radiation particles in space can interact with SRAM and produce a variety of radiation effects, of which the most obvious is the impacts of the total dose irradiation shown on SRAM performance, thus seriously threatening the reliability of the successful completion of the space task and aerospace systems. In order to keep the reliability of SRAM-based devices under space radiation environment, in this paper, the total dose radiation effects, damage mechanism and total dose test methods and evaluation technology of the large-scale SRAM devices were probed detailly to 1) establish a online irradiation and test system of SRAM devices, 2) develop a full parameters off-line testing technology, 3) reveal the mechanism of total dose radiation damage based on the hardware and software above, 4) establish a more comprehensive and more detailed test method and assessment technology of total dose irradiation experiments. Online testing system is a set of parameters testing system developed based on field-programmable gate arrays (FPGA). The parameters it can test include the quiescent power dissipation current, the dynamic consumption current and flip number of memory cells. The precision of current test can achieve up to dozens of nanoampere. The online Irradiation offset system can exert excitation signal and data exchange on SRAM within the cobalt. And under the requriment of complete signal, the maximum working frequency can achieve up to 20MHz. Morever, the offline testing is conducted on the Adwantest 93000 large scale integrated circuit testing machine. By developing the software and test procedure, it enables to do full parameters test and complex function test of SRAM and its precision can achieve plus or minus 10 mV and 100 uA, respectively. The results of the study on total dose radiation effect and damage mechanism of SRAM device indicted: 1) the amplitude change of static power current and dynamic power consumption of SRAM was the most obvious with rise of the total dose, and the maximum was hundreds of times more than initial value. And that other direct current parameter also existed some changes in small range, 2) there are mainly two function failure modes of SRAM device under total dose radiation: failure of storage cell and peripheral circuit malfunction. All things being equal, off-line test was more correct and stricter no matter on aspects of electric current test, reversal of storage cell and functional test, 3) test the current parameter of SRAM after radiation, there were wide difference between test results when the test data in using were different, and the maximum could reach tens of milliampere, 4) however static power current changed with total doses was the most violent which could not declare that could only test the static power current in the assessment of total doses radiation of SRAM. Although other electrical parameters changed with the total doses were small, there was possibility that out of operation before static power current, 5) Process of radiation, total doses radiation damage of SRAM did not show obvious difference under the polarization condition of dynamic read-write and static data storage, 6) Under the environment of total doses radiation, devices in different working frequency suffered total doses radiation damage were different, and the damage was more severe when the working frequency was higher. The total dose radiation damage and evaluation method of SRAM devices were probed through a variety of experiment and test methods under the total dose radiation. Effects of the irradiation conditions and test conditions on the result of the experiment were considered comprephensively, and finally a total dose radiation damage assessment method of SRAM devices was developed.
公开日期2014-09-02
内容类型学位论文
源URL[http://ir.xjipc.cas.cn/handle/365002/3518]  
专题新疆理化技术研究所_材料物理与化学研究室
作者单位中国科学院新疆理化技术研究所
推荐引用方式
GB/T 7714
丛忠超. 微纳大规模集成电路SRAM的总剂量辐射损伤机理及评估方法研究[D]. 北京. 中国科学院大学. 2014.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace