题名动基座下光电经纬仪视轴稳定控制方法研究
作者葛兵
学位类别博士
答辩日期2014-07
授予单位中国科学院大学
导师高慧斌
学位专业机械电子工程
中文摘要动基座下光电经纬仪在对目标进行跟踪测量时,视轴受到载体运动干扰、摩擦力矩干扰和跟踪架质量不平衡等不同的外部干扰,使视轴偏离原来的指向,甚至丢失目标。视轴稳定控制是要隔离载体运动对视轴的扰动,克服各种干扰力矩对于视轴的影响,保证视轴在惯性空间的稳定指向。视轴稳定控制是进行跟踪测量的基础,是动基座下光电跟踪测量系统的一项关键技术。 本文分析了视轴稳定系统的结构,研究了主要构成部分的特点,根据视轴伺服系统的结构和陀螺安装位置,通过坐标变换的方法建立了视轴稳定隔离方程。分析了力矩电机及负载、陀螺仪、图像处理器等伺服控制系统相关的部分的数学模型,建立整个控制对象的数学模型。 本文对于视轴稳定速度环采用了双速度环的控制结构,由陀螺测得的视轴相对于惯性空间的速度构成视轴稳定内环,其主要作用是消除载体运动扰动和摩擦力矩扰动,实现视轴稳定。由编码器测得的视轴相对于经纬仪框架的转动速度构成速度跟踪外环,主要用于跟踪目标运动。讨论了双速度环的抗干扰性、动态响应性能和鲁棒性。从控制策略上引入鲁棒控制理论对控制器进行设计,保证了闭环控制系统的稳定性和鲁棒性。 本文对于动基座下视轴稳定控制系统的位置回路进行研究。电视自动跟踪时,由于伺服系统接收到的图像处理器发送的脱靶量相对于目标实际位置有延时,延时时间的存在限制了伺服系统位置回路的带宽设计,影响了跟踪控制系统的快速响应性,降低了系统的稳态跟踪精度和跟踪稳定性。本文采用了基于机动目标模型的Kalman滤波方法对目标位置进行滤波和预测,并用滤波预测得到的目标的位置和速度构成了前馈控制,改善了系统的跟踪控制精度,同时在目标初始跟踪阶段采用了变结构控制方法,使系统可以快速的做出反应,快速进入稳定跟踪阶段。 本文最后将某型号光电跟踪测量系统置于三维摇摆台上对所提出的理论进行实验。通过仿真和试验结果的分析,采用的鲁棒H∞控制方法在抵抗载体运动干扰及抑制系统对象模型的不确定性对系统动态特性的影响方面有较大的优势,实验结果验证了这种方法的有效性。
英文摘要When Optical-electric equipment is tracking and measuring target on moving base, the LOS is interfered by external disturbances, such as moving base disturbance、unbalanced friction torque and unbalance mass of mechanical structure and so on. So that the LOS will deviate from the original direction, even lost the target. We should isolate LOS from moving base, overcome the impact of disturbance torque on LOS. It is foundation of tracking and measuring that keep the LOS stably direction in inertial space. It is a key technology of the optical tracking system on moving base. This paper analyzes the structure of the LOS stabilization system, studies the characteristics of the main components, analyzes mathematical model of torque motor and load、gyro、image processors and other parts associated to servo control system. So establish mathematical model of entire system. The paper establish LOS isolation equations by coordinate transformation, according to the structure of the LOS stabilization system and position of gyro. The paper introduces double speed loop in the speed loop of LOS stabilization. The inner speed loop is formed by the speed of LOS in the inertial space by gyro. It is used for eliminating carrier disturbance and friction torque disturbance, achieving the LOS stability. The outer speed loop is formed by the encoder, it is used for measuring the speed of the theodolite frame. The outer loop is used for tracking target. The paper Discuss the performance of double speed loops on anti-interference, dynamic response and robustness. It adopts robust control theory on designing controller to ensure the stability and robustness of the closed-loop control system. The paper designs the position loop of LOS stably control system on moving carrier. On TV automatic tracking mode, servo control system receives the off-targrt is postponed relative to the true target position. The delay time limits the bandwidth of the position loop in designing servo system, reduces the rapid response of the tracking control system, and impacts the accuracy and stability of the system.  The paper induces Kalman filtering method in the position filter and prediction, base on maneuvering target model, and constitutes feedforward control by the filter and prediction position and speed. It improved tracking control accuracy of the system. On the beginning of tracking stage, introduce the variable structure control method , the system can respond quickly and turn to the stable tracking stage quickly. Finally, the theory is verified on some Optical-electric tracking and measuring system, placed on a three-dimensional rock platform. Analyze through simulation and experimental results, the methods possess greater advantage on resisting carrier movement and restraining model uncertainties influence to the dynamic characteristics of the system. The experimental results demonstrate the effectiveness of this approach.
语种中文
公开日期2014-08-21
内容类型学位论文
源URL[http://ir.ciomp.ac.cn/handle/181722/41409]  
专题长春光学精密机械与物理研究所_中科院长春光机所知识产出
推荐引用方式
GB/T 7714
葛兵. 动基座下光电经纬仪视轴稳定控制方法研究[D]. 中国科学院大学. 2014.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace