Molecular Design of Competitive Solvation Electrolytes for Practical High-Energy and Long-Cycling Lithium-Metal Batteries
Zhang, Guangzhao4,6; Li, Jiawei3; Chi, Shang-Sen6; Wang, Jun6; Wang, Qingrong6; Ke, Ruohong6; Liu, Zhongbo5; Wang, Hui4; Wang, Chaoyang4; Chang, Jian2,6
刊名ADVANCED FUNCTIONAL MATERIALS
2023-12-21
页码11
关键词bipolar molecule competitive solvation electrolyte high voltage lithium metal batteries molecular design
ISSN号1616-301X
DOI10.1002/adfm.202312413
通讯作者Chang, Jian(changj@gbu.edu.cn) ; Deng, Yonghong(yhdeng08@163.com) ; Lu, Jun(junzoelu@zju.edu.cn)
英文摘要Electrolytes with high stability against both Li anode and high-voltage cathode are critical for high-energy and long-cycling lithium metal batteries (LMBs). However, the free active solvents in common electrolytes are susceptible to decomposition at both Li anode and high-voltage cathode. Although recently developed locally high-concentration electrolytes (LHCEs) have largely restricted active solvents via Li+ coordination, the free molecules are still released upon the desolvation of Li+ at the surface of electrodes, causing continuous decomposition during long-cycling processes. Here, a molecule competitive solvation electrolyte (MCE) is shown to stabilize high-voltage LMBs by introducing a well-designed and newly synthetic bipolar solvent molecule with one ion-dissociative polar head and the other highly fluorinated nonpolar tail. The bipolar molecules competitively dissociate Li+ via weak coordination interactions, drastically reducing the ratio of active solvents in electrolytes and the detrimental decomposition at electrodes during the desolvation processes. Consequently, the MCE enables a 1.4-Ah Li metal pouch cell with a stack energy density of 450 Wh kg-1 along with exceptional operation stability over 400 cycles (retention: 81%). Furthermore, the MCE also maintains the stable operation of a 2.5-Ah Li-S pouch cell with an excellent energy density of 417 Wh kg-1 for 70 cycles under practical conditions. A competitive solvation electrolyte enabled by a well-designed bipolar molecule is proposed to reduce the detrimental decomposition of active solvents with Li anodes and high-voltage cathodes, thus enabling a 1.4-Ah high-voltage pouch cell with the energy density of 450 Wh kg-1 along with long cycling stability (retention: 81% after 400 cycles) under aggressive conditions.image
资助项目National Natural Science Foundation of China ; Guangdong Basic and Applied Basic Research Foundation[2022A1515011005] ; Guangdong Basic and Applied Basic Research Foundation[2023A1515010686] ; Shenzhen Science and Technology Program[JCYJ20220818100218040] ; Opening Project of Key Laboratory of Polymer Processing Engineering[KFKT2302] ; Science and Technology Planning Project of Guangdong Province[2021A0505110001] ; [22371116] ; [22305115] ; [22078144]
WOS关键词ION ; SOLVENTS
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
语种英语
出版者WILEY-V C H VERLAG GMBH
WOS记录号WOS:001128492400001
内容类型期刊论文
源URL[http://ir.qdio.ac.cn/handle/337002/184203]  
专题海洋研究所_海洋腐蚀与防护研究发展中心
通讯作者Chang, Jian; Deng, Yonghong; Lu, Jun
作者单位1.Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310058, Peoples R China
2.Great Bay Univ, Sch Phys Sci, Dongguan 523000, Guangdong, Peoples R China
3.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China
4.South China Univ Technol, Res Inst Mat Sci, Key Lab Polymer Proc Engn, Guangzhou 510640, Peoples R China
5.Shenzhen CAPCHEM Technol Co Ltd, Shenzhen 518118, Peoples R China
6.Southern Univ Sci & Technol, Key Univ Lab Highly Efficient Utilizat Solar Energ, Sch Innovat & Entrepreneurship, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Guangzhao,Li, Jiawei,Chi, Shang-Sen,et al. Molecular Design of Competitive Solvation Electrolytes for Practical High-Energy and Long-Cycling Lithium-Metal Batteries[J]. ADVANCED FUNCTIONAL MATERIALS,2023:11.
APA Zhang, Guangzhao.,Li, Jiawei.,Chi, Shang-Sen.,Wang, Jun.,Wang, Qingrong.,...&Lu, Jun.(2023).Molecular Design of Competitive Solvation Electrolytes for Practical High-Energy and Long-Cycling Lithium-Metal Batteries.ADVANCED FUNCTIONAL MATERIALS,11.
MLA Zhang, Guangzhao,et al."Molecular Design of Competitive Solvation Electrolytes for Practical High-Energy and Long-Cycling Lithium-Metal Batteries".ADVANCED FUNCTIONAL MATERIALS (2023):11.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace