Temperature gradient enhances the solidification process and properties of a CoCrFeNi high-entropy alloy: Atomic insights from molecular dynamics simulations
Xie, Lu; Wu, Guangda; Liaw, Peter K.; Wang, Wenrui; Li, Dongyue; Peng Q(彭庆); Zhang, Jie; Zhang, Yong
刊名COMPUTATIONAL MATERIALS SCIENCE
2024-01-05
卷号231页码:12
关键词High-entropy alloy Temperature gradient Stress distribution Cooling rate
ISSN号0927-0256
DOI10.1016/j.commatsci.2023.112538
通讯作者Xie, Lu(xielu@ustb.edu.cn) ; Zhang, Yong(drzhangy@ustb.edu.cn)
英文摘要Material properties are substantially affected by the process during fabrication. To what extent for high-entropy alloys (HEAs), however, is still an open question. Herein, we investigated the effect of a temperature gradient on the solidification of a CoCrFeNi HEA using molecular dynamic simulations. The nucleation and crystal growth under gradient temperatures significantly differ from those under homogeneous temperatures. The HEA solidified by a temperature gradient forms a single and uniform face-centered cubic (FCC) crystalline phase, and the residual stresses in the solidified tissue are optimized. During the homogeneous solidification process, in addition to the FCC phase, the hexagonal close-packed (HCP) phase and a small amount of body-centered cubic (BCC) phase were also formed. When the temperature gradient is 100 K, the stress distribution in the solidification microstructure is relatively low. Increasing the temperature gradient can enhance the crystallinity of the solidification microstructure. While, an increase in cooling rate will lead to a reduction in the crystallinity of the solidification microstructure and an increase in internal stresses within the solidification microstructure. A slight short-range order (SRO) phenomenon present in both solidified structures. Our atomistic insights might be helpful in the fundamental understanding and material design of HEAs.
分类号Q3
资助项目National Key R & D Program of China[2020YFA0405700] ; National Natural Science Foundation of China[12272378] ; National Natural Science Foundation of China[52101189] ; LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences[E1Z1011001]
WOS关键词PHASE-FIELD SIMULATION ; FREE DENDRITE GROWTH ; COOLING RATE ; NUCLEATION ; MICROSTRUCTURE ; EVOLUTION ; BEHAVIOR ; CRYSTAL ; DESIGN ; BINARY
WOS研究方向Materials Science
语种英语
WOS记录号WOS:001096556500001
资助机构National Key R & D Program of China ; National Natural Science Foundation of China ; LiYing Program of the Institute of Mechanics, Chinese Academy of Sciences
其他责任者Xie, Lu ; Zhang, Yong
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/93358]  
专题力学研究所_非线性力学国家重点实验室
推荐引用方式
GB/T 7714
Xie, Lu,Wu, Guangda,Liaw, Peter K.,et al. Temperature gradient enhances the solidification process and properties of a CoCrFeNi high-entropy alloy: Atomic insights from molecular dynamics simulations[J]. COMPUTATIONAL MATERIALS SCIENCE,2024,231:12.
APA Xie, Lu.,Wu, Guangda.,Liaw, Peter K..,Wang, Wenrui.,Li, Dongyue.,...&Zhang, Yong.(2024).Temperature gradient enhances the solidification process and properties of a CoCrFeNi high-entropy alloy: Atomic insights from molecular dynamics simulations.COMPUTATIONAL MATERIALS SCIENCE,231,12.
MLA Xie, Lu,et al."Temperature gradient enhances the solidification process and properties of a CoCrFeNi high-entropy alloy: Atomic insights from molecular dynamics simulations".COMPUTATIONAL MATERIALS SCIENCE 231(2024):12.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace