Coupled magnetic and structural transition in topological antiferromagnet EuAgAs under high pressure
Zhang, Zhuyi6,7; Chen, Xuliang6,7; An, Chao5; Wang, Shuyang7; Zhang, Lili4; Zhou, Yonghui6,7; Zhang, Min5; Zhou, Jian2,3; Yang, Zhaorong1,5,6,7
刊名MATERIALS TODAY PHYSICS
2023-11-01
卷号38
关键词Topological antiferromagnet High pressure Magnetoresistance Phase transition Marginal fermi-liquid state
ISSN号2542-5293
DOI10.1016/j.mtphys.2023.101228
通讯作者Chen, Xuliang(xlchen@hmfl.ac.cn) ; Yang, Zhaorong(zryang@issp.ac.cn)
英文摘要Recently, EuAgAs and its derivatives have emerged as a promising platform for studying the interplay of transports, magnetism and topology. Herein, we report construction of a temperature-pressure phase diagram for antiferromagnetic Dirac semimetal EuAgAs, through electrical transport, synchrotron x-ray diffraction and Raman spectroscopy measurements in diamond anvil cells at high pressures up to 48.6 GPa. At Pc1-3-5 GPa, we found a pressure-induced magnetic phase transition with accompanying a structural P63/mmc -> Pnma transition. In the pristine antiferromagnetic phase, negative colossal magnetoresistance is observed mainly below the Ne ' el temperature TN along with a field-induced metamagnetic transition; in the emergent magnetic phase, however, it is evident both above and below the magnetic critical temperature TC yet with no field-induced metamagnetic transition. These distinct features lead us to argue a ferromagnetic-like state for EuAgAs above Pc1, which is further supported by observation of a T5/3 temperature dependence of low-temperature resistance, a characteristic of marginal Fermi-liquid state expected to exist close to a ferromagnetic instability by spin fluctuations in metallic ferromagnets. At Pc2-20 GPa, a possible phase transition of electronic origin may take place, which is revealed jointly by change of a T5/3 -> T5/2 temperature dependence of low-temperature resistance and change in slope of linear-in-T resistance at high temperatures.
资助项目National Key Research and Development Program of China[2022YFA1602603] ; National Natural Science Foundation of China[12174395] ; National Natural Science Foundation of China[12004004] ; Users with Excellence Project of Hefei Center CAS[2021HSC-UE008] ; Youth Innovation Promotion Association CAS[2020443]
WOS关键词TOTAL-ENERGY CALCULATIONS ; METAL ; SERIES
WOS研究方向Materials Science ; Physics
语种英语
出版者ELSEVIER
WOS记录号WOS:001075198600001
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China ; Users with Excellence Project of Hefei Center CAS ; Youth Innovation Promotion Association CAS
内容类型期刊论文
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/132634]  
专题中国科学院合肥物质科学研究院
通讯作者Chen, Xuliang; Yang, Zhaorong
作者单位1.Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
2.Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
3.Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
4.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil SSRF, Shanghai 201204, Peoples R China
5.Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Anhui, Peoples R China
6.Univ Sci & Technol China, Sci Isl Branch, Grad Sch, Hefei 230026, Anhui, Peoples R China
7.Chinese Acad Sci, Anhui Key Lab Condensed Matter Phys Extreme Condit, High Magnet Field Lab, HFIPS, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhuyi,Chen, Xuliang,An, Chao,et al. Coupled magnetic and structural transition in topological antiferromagnet EuAgAs under high pressure[J]. MATERIALS TODAY PHYSICS,2023,38.
APA Zhang, Zhuyi.,Chen, Xuliang.,An, Chao.,Wang, Shuyang.,Zhang, Lili.,...&Yang, Zhaorong.(2023).Coupled magnetic and structural transition in topological antiferromagnet EuAgAs under high pressure.MATERIALS TODAY PHYSICS,38.
MLA Zhang, Zhuyi,et al."Coupled magnetic and structural transition in topological antiferromagnet EuAgAs under high pressure".MATERIALS TODAY PHYSICS 38(2023).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace