Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond
R. Z. Zheng; J. B. Lu; Y. Wang; Z. Y. Chen; X. Zhang; X. Y. Li; L. Liang; L. Qin; Y. G. Zeng; Y. Y. Chen and Y. M. Liu
刊名Applied Physics Letters
2022
卷号121期号:10页码:8
ISSN号0003-6951
DOI10.1063/5.0102995
英文摘要Wide-bandgap semiconductors are more advantageous for betavoltaic batteries due to their high conversion efficiency and strong radiation resistance. However, there has been little comprehensive analysis of how wide-bandgap semiconductors lead to efficiency improvements. In this work, we proposed a simulation model to predict the output performance of betavoltaic batteries based on 4H-SiC, hexagonal-GaN, and diamond, in which the Monte Carlo code and COMSOL Multiphysics software were combined. The energy deposition of a 63 Ni source in semiconductors and the electrical characteristics of p-n junctions were investigated and compared. Our simulation results showed that the mass density and atomic number of semiconductor materials will cause the difference in energy deposition distribution, further leading to the different electron-hole pair generation rates. Then, the internal efficiency of batteries is co-determined by the energy band structure, depletion region width, built-in potential barrier, and minority carrier lifetime. The batteries based on wide-bandgap semiconductors can achieve the larger open-circuit voltage, further leading to higher efficiency. Additionally, to optimize the energy converter structure, the output parameters were calculated with a variation of doping concentrations and thicknesses of each region. Under the irradiation of a 63 Ni source, the diamond-based battery with a p-n junction structure has the highest internal efficiency of 31.3%, while the GaN-based battery has the lowest one (16.8%), which can be attributed to the larger carrier recombination rate. Published under an exclusive license by AIP Publishing.
URL标识查看原文
语种英语
内容类型期刊论文
源URL[http://ir.ciomp.ac.cn/handle/181722/67216]  
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
R. Z. Zheng,J. B. Lu,Y. Wang,et al. Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond[J]. Applied Physics Letters,2022,121(10):8.
APA R. Z. Zheng.,J. B. Lu.,Y. Wang.,Z. Y. Chen.,X. Zhang.,...&Y. Y. Chen and Y. M. Liu.(2022).Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond.Applied Physics Letters,121(10),8.
MLA R. Z. Zheng,et al."Understanding efficiency improvements of betavoltaic batteries based on 4H-SiC, GaN, and diamond".Applied Physics Letters 121.10(2022):8.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace