CORC  > 兰州理工大学  > 兰州理工大学  > 材料科学与工程学院  > 特聘教授组
Self-assembled three-dimensional framework of PbTiO3:epsilon-Fe2O3 nanostructures with room temperature multiferroism
Cao, Yi2,3; Wu, Bo4; Zhu, Yin-Lian2; Wang, Yu-Jia2; Tang, Yun-Long2; Liu, Nan2,3; Liu, Jia-Qi2,3; Ma, Xiu-Liang1,2
刊名APPLIED SURFACE SCIENCE
2021-04-01
卷号544页码:-
关键词Composite multiferroics Preferential epitaxy Magnetoelectric coupling Scanning probe microscopy Strain engineering
ISSN号0169-4332
DOI10.1016/j.apsusc.2021.148945
英文摘要Hybrid multiferroic systems composed of complex oxides have drawn sustained attention for decades due to their intriguing physical effects and potential technological exploitations. Designing innovative nanostructures of multiferroic nanocomposites to overcome inherent shortcomings for conventional layered (e.g. clamping effect) and vertically aligned (e.g. leaky) films are instrumental to realize genuine multifermic behaviors. Here the self-assembled architecture with three-dimensional (3D) framework of heterostructures is fabricated, wherein well-ordered multiferroic epsilon-Fe2O3 (epsilon-FO) nanoboats are embedded in a ferroelectric perovskite PbTiO3 (PTO) matrix. The biphasic system combines strong interfacial magnetoelectric couplings of vertically aligned heterostructure and addressed leakage issue via preferential epitaxy of a high-resistance transition layer of PTO. Additionally, the two phases maintain full lattice coherence along vertical interfaces allowing for efficient interfacial strain coupling. Ferroelectricity and piezoelectric switching of the 3D nanostructured PTO:epsilon-FO film have been corroborated macroscopically by polarization hysteresis (Ps similar to 45 mu C cm(-2)) and locally by piezoresponse force microscopy, and strong magnetoelectric coupling has been manifested as a sizable modification of piezoelectric switching characteristics via applying a DC magnetic field, all conducting at room temperature. The novel 3D multifermic-ferroelectric heterostructure offers great potential for nanoengineering of multiferroic composites, thus opens an avenue towards superior microelectronics and spintronics.
WOS研究方向Chemistry ; Materials Science ; Physics
语种英语
出版者ELSEVIER
WOS记录号WOS:000618284700002
内容类型期刊论文
源URL[http://ir.lut.edu.cn/handle/2XXMBERH/147269]  
专题材料科学与工程学院_特聘教授组
作者单位1.Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Langongping Rd 287, Lanzhou 730050, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China;
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China;
4.Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China;
推荐引用方式
GB/T 7714
Cao, Yi,Wu, Bo,Zhu, Yin-Lian,et al. Self-assembled three-dimensional framework of PbTiO3:epsilon-Fe2O3 nanostructures with room temperature multiferroism[J]. APPLIED SURFACE SCIENCE,2021,544:-.
APA Cao, Yi.,Wu, Bo.,Zhu, Yin-Lian.,Wang, Yu-Jia.,Tang, Yun-Long.,...&Ma, Xiu-Liang.(2021).Self-assembled three-dimensional framework of PbTiO3:epsilon-Fe2O3 nanostructures with room temperature multiferroism.APPLIED SURFACE SCIENCE,544,-.
MLA Cao, Yi,et al."Self-assembled three-dimensional framework of PbTiO3:epsilon-Fe2O3 nanostructures with room temperature multiferroism".APPLIED SURFACE SCIENCE 544(2021):-.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace