CORC  > 兰州理工大学  > 兰州理工大学  > 材料科学与工程学院
Ultra-high capacity and ultra-long cyclability anode materials of non-layered vanadium carbide(V8C7)@carbon microspheres for biapplications in Li-ion battery and Li-ion capacitor
He, Zheng-Hua1; Gao, Jian-Fei1; Kong, Ling-Bin1,2
刊名Journal of Alloys and Compounds
2022-11-15
卷号921
关键词Anodes Carbides Carbon Cathodes Citrus fruits Doping (additives) Lithium-ion batteries Microspheres Synthesis (chemical) Transition metals Vanadium compounds Biochar Cycle stability GITT Grapefruit peel biochar Hybrid capacitor Li-ion hybrid capacitor Long cycles Non-layered transition metal carbide Raisin cake structure Transition metals carbides
ISSN号0925-8388
DOI10.1016/j.jallcom.2022.166138
英文摘要The main factor affecting the electrochemical performance of Li-ion hybrid capacitor (LIHCs) is the imbalance of kinetics between anode and cathode. Although 2D Layered Mxenes widely applied to energy storage owing to their remarkable electrical conductivity and adjustable interlamellar spacing, the synthesis process is time-consuming and hazardous. Therefore, Non-layered transition metal carbides (TMC) have gradually become a research hotspot. Herein, a facile two-step method is reported to synthesize the V8C7 nanoparticles grown in situ in carbon microspheres (V8C7 @CMs). The V8C7 @CMs provide high specific capacity (774 mAh g−1 after 330 cycles at 0.1 A g−1) in half cell. The long cycle stability with extraordinary rate capability (150 mAh g−1 after 5000 cycles at 1 A g−1, 100 mAh g−1 - 13000 cycles - 2 A g−1, and 70 mAh g−1 - 20000 cycles-5 A g−1) can be demonstrated. In order to realize the construction of high-performance LIHCs, it is also very important to design the cathode materials reasonably. So, the cathode material, nitrogen doped grapefruit peel biochar (NGPB), with outstanding rate performance and superior cycle stability, was designed and synthesized by the method of calcination. The performance tests indicates that the specific capacity is kept at 125 mAh g−1 after 2000 cycles at 1 A g−1, 120 mAh g−1-2000 cycles-2 A g−1 and 115 mAh g−1-2000 cycles-5 A g−1. Then, the constructed V8C7 @CMs//NGPB-2 LIHCs demonstrates high power density (PD) (9358 W kg−1), energy density (ED) (95.55 Wh kg−1) and excellent long cycle stability (a capacity retention rate of 74.7% after 10,000 cycles at 0.1 A g−1, 77%−5000 cycles-1 A g−1). Based on the above research, it is found that the key to realize high-performance LIHCs is to develop long-cycle stable and super rate capability anode materials. © 2022 Elsevier B.V.
WOS研究方向Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
出版者Elsevier Ltd
WOS记录号WOS:000828781100001
内容类型期刊论文
源URL[http://ir.lut.edu.cn/handle/2XXMBERH/159367]  
专题材料科学与工程学院
作者单位1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou; 730050, China;
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou; 730050, China
推荐引用方式
GB/T 7714
He, Zheng-Hua,Gao, Jian-Fei,Kong, Ling-Bin. Ultra-high capacity and ultra-long cyclability anode materials of non-layered vanadium carbide(V8C7)@carbon microspheres for biapplications in Li-ion battery and Li-ion capacitor[J]. Journal of Alloys and Compounds,2022,921.
APA He, Zheng-Hua,Gao, Jian-Fei,&Kong, Ling-Bin.(2022).Ultra-high capacity and ultra-long cyclability anode materials of non-layered vanadium carbide(V8C7)@carbon microspheres for biapplications in Li-ion battery and Li-ion capacitor.Journal of Alloys and Compounds,921.
MLA He, Zheng-Hua,et al."Ultra-high capacity and ultra-long cyclability anode materials of non-layered vanadium carbide(V8C7)@carbon microspheres for biapplications in Li-ion battery and Li-ion capacitor".Journal of Alloys and Compounds 921(2022).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace