CORC  > 过程工程研究所  > 中国科学院过程工程研究所
题名基于离子液体的功能化复合隔膜研究
作者刘晓霞
答辩日期2019-07-01
文献子类硕士
授予单位中国科学院大学
导师张锁江
关键词安全高效快充,核壳结构,纳米纤维膜,离子液体,无机纳米颗粒
学位专业化学工程
英文摘要

众所周知,锂离子电池具有能量密度高,循环寿命长,无记忆效应和环境友好的优点。然而,随着能源消耗需求的增加,安全,高效和快速充电电池将成为未来大型设备应用的必要条件。这就要求电解质材料应具备较高的离子电导率和锂离子迁移数、较好的热稳定性、及与电极材料良好的相容性。目前锂离子电池电解质主要存在以下几个问题:锂离子迁移数低,界面相容性差,电场分布不均匀,快充、低温等条件下易生长锂枝晶。而其中电解液更是存在易泄露、易挥发、可燃、安全性差等问题。为满足锂电池安全、高效、快充等需求,电解质应满足室温离子电导率高(>10-3 S/cm)、锂离子迁移数接近1、电化学窗口宽、可用温度范围宽、热稳定性好、安全性高、有助于稳定界面膜的形成等要求。本研究中我们通过静电纺丝将1-丙基(三甲氧基)硅烷-1-甲基哌啶鎓氯化物(PPCl)离子液体和无机纳米颗粒Li2SiO3(LSO)分别引入聚偏氟乙烯-六氟丙烯(PVDF-HFP)纳米同轴纤维的核和壳中,从而制备得到了有机、无机双组分改性的多孔电解质膜。PPCl不可燃、不易挥发,并有助于电池中生成稳定的固态电解质膜(SEI),从而可有效提升电解质的安全性和界面稳定性。无机纳米颗粒LSO可以抑制LiPF6的分解、清除HF,从而抑制过渡金属离子的溶解,进而提高锂离子电池的循环寿命和容量保持率。同时,该电解质膜还具有孔结构丰富、吸液率高等优势,可有效提升电池的倍率性能。因此,这种核壳结构的纳米纤维膜在快充锂电池领域具有巨大的应用价值。本文的主要研究内容包括:(1)利用氯丙基硅氧烷,哌啶,在氮气氛围下进行接枝,合成离子液体PPCl。根据TFSI-和FSI-的疏水的特性,将LiTFSI和 LiFSI与离子液体PPCl在去离子水中进行阴离子交换制备了PPTFSI和PPFSI两种离子液体。(2)从纺丝溶液的浓度、纺丝电压、推注速度、纺丝温度、距离等方面探究了纳米纤维膜的制备过程及其影响因素。进行了两种不同分子量的PVDF-HFP聚合物基体,硅酸锂、离子液体掺杂聚合物及核壳结构纳米纤维等几种纺丝液在纺丝过程中工艺条件的优化。筛选得到了不同聚合物溶液各自比较适宜的纺丝工艺参数。(3)采用场发射扫描电子显微镜(SEM)、透射扫描电子显微镜(TEM)、接触角测试、电解液吸液率、孔隙率、热收缩实验等方法对电解质进行了表征。结果表明核壳结构纳米纤维膜具有高孔隙率、高吸液率、热稳定性好、界面兼容性好、安全性能好等。 (4)运用交流阻抗(EIS)、计时电流法(CA)、循环伏安(CV)、线性扫描(LSV)、循环性能、倍率性能和对称锂电池循环稳定性等对不同电解质进行电化学性能测试。结果表明核壳结构的纳米纤维膜具有较高导电率,用于NCM622||Li半电池具有良好的倍率性能,在20 C大倍率下循环时放电容量比商业化电解质体系提高了13倍,且循环稳定,3 C循环300圈时的放电容量是商业化电解质体系的6.2倍,5 C循环300圈时的放电容量是其3.3倍。该电解质可以在电极表面形成稳定的界面膜,降低界面阻抗,室温搁置30天后界面阻抗仅为商业化电解质体系的30 %。该电解质极大的抑制了锂枝晶的生长,提高了电池的安全性,可满足高能量锂离子电池安全、高效、快充的需求。 ;As is well-known, lithium-ion batteries have the advantages of high energy density, long cycle life, no memory effect and environmental friendliness. However, safety, high efficiency, and fast charging batteries will become the necessity of application in future large-scale equipment with the increasing demand for energy consumption. Accordingly, the electrolyte should have high ionic conductivity, well lithium ion mobility, good thermal stability and good compatibility. At present, lithium ion batteries mainly face the following problems: low migration of lithium ions, poor interface compatibility, electric field distribution is uneven, as well as the growth of lithium dendrites. More, the traditional liquid electrolyte has disadvantages such as easy to leak, volatility, inflammability, poor security, etc. In order to meet the demands for safety, high efficiency and fast charging, the new electrolyte should have high room temperature ionic conductivity (>10-3 s/cm), lithium ion migration number approaching 1, wide electrochemical window, wide temperature range, good thermal stability, high safety and easy to forming stable interface.Here, through simple coaxial electrospinning, we introduced ionic liquid PPCl and inorganic nanoparticles Li2SiO3 into the core and shell parts of PVDF-HFP coaxial nanofibers, respectively, to obtain the porous electrolyte membrane with modified inorganic/organic components. PPCl, is fire-resistant, non-volatile, and contributes to formation of stable SEI in the battery, thus the safety and interface stability of the electrolyte is enhanced. Inorganic nanoparticles Li2SiO3 can inhibit the decomposition of LiPF6 and remove HF, to inhibit the dissolution of transition metal ions, thus improving the cycle life and capacity retention of lithium ion batteries. Meanwhile, this electrolyte membrane has advantages like rich porous structure and high electrolyte absorptivity. Therefore, the core-shell-structure nanofiber membrane is of great value in the application of fast charging lithium batteries. The main research contents as follows:(1) The ionic liquid PPCl was synthesized by grafting with chloropropylsiloxane and piperidine under nitrogen atmosphere. According to the hydrophobic properties of TFSI- and FSI-, PPTFSI and PPFSI ionic liquids were prepared by anion exchange of LiTFSI and LiFSI with ionic liquid PPCl in deionized water.(2) From the aspects of spinning solution concentration, spinning voltage, injection speed, spinning temperature, spinning distance, the preparation process of nanofibers membrane and influence factors were studied. The technological conditions of various spinning solution containing two different molecular weight of PVDF-HFP polymer, lithium silicate nanoparticles, doped ionic liquids polymer, and core-shell-structure nanometer fiber were optimized for the spinning process. The suitable spinning process parameters of different polymer solutions were selected.(3) Electrolytes were characterized by field emission scanning electron microscope (SEM), transmission scanning electron microscope (TEM), contact angle test, electrolyte absorptivity, porosity and thermal shrinkage test. The improved core-shell structure nanofiber membrane has high porosity, high electrolyte uptake, good thermal stability, well interface compatibility and high safety.(4) Various electrochemical performance tests were conducted on different electrolytes, including electrochemical impedance spectroscopy (EIS), chronoamperometry (CA), cyclic voltammetry (CV), linear sweep voltammetry (LSV), cyclic performance, rate performance and stability of symmetrical lithium battery. It is proved that core-shell-structure nanofiber membrane has high conductivity and shows good rate performance in NCM622||Li half-cell systems. At 20 C, this composite electrolyte shows discharge capacity 13 times higher than that of polypropylene (PP) membrane, with cycling stability. At 3 C, its discharge capacity is 6.2 times that of the traditional commercial separator after 300 cycles, and 3.3 times at 5 C. On the electrode surface, it can form stable interface membrane to reduce the impedance interface. After 30 days, its interface impedance was only 30 % of that of the traditional commercial polyolefin membrane. Thus, the improved electrolyte greatly inhibits the growth of lithium dendrite and improves the battery safety, meeting the requirements of safety, high efficiency and fast charging for lithium ion batteries. 

语种中文
内容类型学位论文
源URL[http://ir.ipe.ac.cn/handle/122111/40621]  
专题中国科学院过程工程研究所
推荐引用方式
GB/T 7714
刘晓霞. 基于离子液体的功能化复合隔膜研究[D]. 中国科学院大学. 2019.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace