Response of microbial community and net nitrogen turn(o)ver to modify climate change in Alpine meadow
Wang, Nannan3; Wang, Changhui; Dannenmann, Michael; Butterbach-Bahl, Klaus; Huang, Jianhui3
刊名APPLIED SOIL ECOLOGY
2020
卷号152
关键词Global change Grassland Microbial community Nitrogen mineralization Nitrification
ISSN号0929-1393
DOI10.1016/j.apsoil.2020.103553
文献子类Article
英文摘要In order to investigate the effect of climate change on the functional role of microbial community, we studied links between microbial community structure and the net ammonification and nitrification rates in a space for time climate change experiment. Abundance of bacteria and fungi as well as the induced climate change effects varied with seasons. The highest PLFA concentrations were found in frozen soils of the climate change treatment in which organic carbon (C) and nitrogen (N) substrates accumulated. It indicated that frozen soil can be the hot moment for soil microbial community. We found that climate change significantly increased total PLFA concentrations while decrease F:B ratio in July. It suggested that climate change could increase growth of bacteria more than that of fungi, and thus changed the soil microbial community structure. On the other hand, net N turnover itself was largely negative (i.e. illustrating net immobilization and the high N retention capacity). Since the ability of net rates of N turnover to predict plant N availability is relying on the (invalid) assumption that plants poorly compete for mineral N against soil microbes, this might be related to the strong plant-soil-microbe carbon-nitrogen interactions in the investigated soil, and unfortunately climate change would enhance the interaction. Therefore, net N mineralization has its limitation to deeply study the microbial N turnover in N biogeochemistry cycles.
学科主题Soil Science
电子版国际标准刊号1873-0272
出版地AMSTERDAM
WOS关键词SOIL ; TEMPERATURE ; WINTER ; MINERALIZATION ; MANAGEMENT ; TURNOVER ; IMPACTS ; NITRATE
WOS研究方向Agriculture
语种英语
出版者ELSEVIER
WOS记录号WOS:000529336600009
资助机构Chinese National Key Research and Development Program for Basic Research [2017YFA0604802, 2016YFC0500703] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41573063, 31572452] ; Helmholtz Centre for Environmental Research TERENO initiative ; SUSALPS project - BMBF through the BonaRes initiative
内容类型期刊论文
源URL[http://ir.ibcas.ac.cn/handle/2S10CLM1/21783]  
专题植被与环境变化国家重点实验室
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Karlsruhe Inst Technol KIT, Atmospher Environm Res IMK IFU, Inst Meteorol & Climate Res, D-82467 Garmisch Partenkirchen, Germany
3.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
推荐引用方式
GB/T 7714
Wang, Nannan,Wang, Changhui,Dannenmann, Michael,et al. Response of microbial community and net nitrogen turn(o)ver to modify climate change in Alpine meadow[J]. APPLIED SOIL ECOLOGY,2020,152.
APA Wang, Nannan,Wang, Changhui,Dannenmann, Michael,Butterbach-Bahl, Klaus,&Huang, Jianhui.(2020).Response of microbial community and net nitrogen turn(o)ver to modify climate change in Alpine meadow.APPLIED SOIL ECOLOGY,152.
MLA Wang, Nannan,et al."Response of microbial community and net nitrogen turn(o)ver to modify climate change in Alpine meadow".APPLIED SOIL ECOLOGY 152(2020).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace