Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis
Du, Yangong; Ke, Xun; Li, Jingmei; Wang, Yunying; Cao, Guangmin; Guo, Xiaowei; Chen, Kelong
刊名CATENA
2021
卷号199
关键词Global grassland Nitrogen deposition Effect size N2O emission
英文摘要Nitrous oxide (N2O) emissions in grasslands contribute considerably to global warming and are influenced substantially by nitrogen deposition. However, the impacts of N deposition impact on soil N2O emission rates across global grassland remain unclear due to spatial heterogeneity. Here, we synthesized data from 34 published studies to clarify the response of N2O emission rates to N deposition across global grassland. The priming effect size of N deposition on global grassland N2O emission rate was 1.64 +/- 0.14 (95% confidence interval 1.36-1.92, P < 0.0001). Categorical variable analysis revealed that various N types influenced effect size significantly, in the orders of urine > slurry > dung > NH4SO4 > NH4NO3 > urea. Furthermore, explained heterogeneity analysis revealed that air temperature, nitrogen dose, precipitation and soil bulk density was positively associated with effect size. In addition, air temperature, altitude, pH and nitrogen dose were the major factors influencing effect size. Path analysis also indicated that N dose took a significant role on direct effect (P < 0.01), the indirect effects were relative higher of soil pH, air temperature and altitude through soil bulk. We provide a key insight that continuous increase in N deposition would significantly stimulate grasslands N2O emission. Controlling greenhouse effect and soil acidification would mitigate the priming effect availably.
内容类型期刊论文
源URL[http://210.75.249.4/handle/363003/60828]  
专题西北高原生物研究所_中国科学院西北高原生物研究所
推荐引用方式
GB/T 7714
Du, Yangong,Ke, Xun,Li, Jingmei,et al. Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis[J]. CATENA,2021,199.
APA Du, Yangong.,Ke, Xun.,Li, Jingmei.,Wang, Yunying.,Cao, Guangmin.,...&Chen, Kelong.(2021).Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis.CATENA,199.
MLA Du, Yangong,et al."Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis".CATENA 199(2021).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace