China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna
Wu, Yue-Liang; Luo, Zi-Ren; Wang, Jian-Yu; Bai, Meng; Bian, Wei; Cai, Rong-Gen; Cai, Zhi-Ming; Cao, Jin; Chen, Di-Jun; Chen, Ling
刊名COMMUNICATIONS PHYSICS
2021
卷号4期号:1页码:34
关键词BLACK-HOLE BINARIES
ISSN号2399-3650
DOI10.1038/s42005-021-00529-z
英文摘要In this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper. Gravitational wave astronomy has opened the door to test general relativity and the effect of gravity in the Universe. The authors present the capabilities of an overlap between space gravitational wave detectors LISA and Taiji to constrain the Hubble constant to 0.5%, in 10 years, and what can be learned from the satellite pilot Taiji-1 launched in 2019.
学科主题Physics
语种英语
内容类型期刊论文
源URL[http://ir.itp.ac.cn/handle/311006/27284]  
专题理论物理研究所_理论物理所1978-2010年知识产出
作者单位1.Univ Chinese Acad Sci UCAS, Taiji Lab Gravitat Wave Universe Beijing Hangzhou, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Theoret Phys, Beijing, Peoples R China
4.UCAS, Int Ctr Theoret Phys Asia Pacific ICTP AP Beijing, Beijing, Peoples R China
5.UCAS, Hangzhou Inst Adv Study, Hangzhou, Peoples R China
6.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai, Peoples R China
7.Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China
8.Chinese Acad Sci, Innovat Acad Microsatellites, Shanghai, Peoples R China
9.Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Space Laser Engn Technol Lab, Shanghai, Peoples R China
10.Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yue-Liang,Luo, Zi-Ren,Wang, Jian-Yu,et al. China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. COMMUNICATIONS PHYSICS,2021,4(1):34.
APA Wu, Yue-Liang.,Luo, Zi-Ren.,Wang, Jian-Yu.,Bai, Meng.,Bian, Wei.,...&Zou, Zi-Ming.(2021).China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna.COMMUNICATIONS PHYSICS,4(1),34.
MLA Wu, Yue-Liang,et al."China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna".COMMUNICATIONS PHYSICS 4.1(2021):34.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace