Cellular entry of graphene nanosheets: The role of thickness, oxidation and surface adsorption
Wang JL(王九令); Wei YJ(魏宇杰); Shi XH(施兴华); Gao HJ
刊名RSC ADVANCES
2013-09-28
通讯作者邮箱shixh@imech.ac.cn
卷号3期号:36页码:15776-15782
关键词Carbon Nanotubes Graphene Nanosheets Lipid-Bilayers Coarse-Grained Model Molecular-Dynamics Hydrophobicity Surface Absorption Oxidation Bio Medical DiagnosticsCarbon Nanotubes Graphene Nanosheets Lipid-Bilayers Coarse-Grained Model Molecular-Dynamics Hydrophobicity Surface Absorption Oxidation Bio Medical Diagnostics
ISSN号2046-2069
通讯作者Shi, XH (reprint author), Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China.
产权排序[Wang, Jiuling; Wei, Yujie; Shi, Xinghua] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China; [Gao, Huajian] Brown Univ, Sch Engn, Providence, RI 02912 USA
合作状况国际
中文摘要Coarse grained molecular dynamics simulations are conducted to study the interaction of graphene nanosheets with a lipid bilayer, focusing on the effects of graphene thicknesses (single/multi-layered graphene), oxidation and surface absorption by lipid molecules. The results show that a hydrophobic corner of graphene can pierce into the bilayer, while different oxidations of the nanosheets affect their final equilibrium configurations in the bilayer: lying across or within the hydrophobic core of the bilayer. The underlying mechanism is clarified by calculating the energy barrier for graphene piercing into the bilayer. Our studies provide fundamental guidance towards understanding how graphene enters cells, which is important for biomedical diagnostics and therapies, and for managing health impacts following occupational or environmental exposure.
学科主题固体力学
分类号二类/Q2
收录类别SCI ; EI
资助信息National Natural Science Foundation of China (NSFC) [11272327]; National Science Foundation (NSF) [CMMI-1028530]; Supercomputing Center of Chinese Academy of Sciences (SCCAS)
原文出处http://dx.doi.org/10.1039/c3ra40392k
语种英语
WOS记录号WOS:000323271700037
公开日期2013-09-27
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/47462]  
专题力学研究所_非线性力学国家重点实验室
推荐引用方式
GB/T 7714
Wang JL,Wei YJ,Shi XH,et al. Cellular entry of graphene nanosheets: The role of thickness, oxidation and surface adsorption[J]. RSC ADVANCES,2013,3(36):15776-15782.
APA Wang JL,Wei YJ,Shi XH,&Gao HJ.(2013).Cellular entry of graphene nanosheets: The role of thickness, oxidation and surface adsorption.RSC ADVANCES,3(36),15776-15782.
MLA Wang JL,et al."Cellular entry of graphene nanosheets: The role of thickness, oxidation and surface adsorption".RSC ADVANCES 3.36(2013):15776-15782.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace