题名木质纤维组份分离及其应用研究
作者张建安
学位类别博士
答辩日期1999-09
授予单位中国科学院研究生院
导师李佐虎
关键词木质纤维素 分离 木质素 纤维素 半纤维素 应用
其他题名Separation and Utilization of Lignocellulose Components
中文摘要木质纤维是地球上丰富的可再生资源之一。它主要是由纤维素、半纤维素和木质素组成。这些组份可转化为化工、生物、食品、医药等产品,其种类之多已使木质纤维素成为一种很有前途的无污染工业原料。从木质纤维素三组份的特点而言,由于其物理、化学、生物学性能以及结构上存在着很大差异,它们交织缠绕在一起,很难被充分利用,而且,组份之间还有很强的制约作用,因此,有必要对其进行三组份分离,以实现木质纤维素生物量全利用。基于这一思想,本文以麦草为木质纤维素原料,系统地研究了麦草组份分离及其生物量全利用途径,旨在为木质纤维素生物量全利用提供一些有借鉴作用的新思路和理论依据。通过碱-氧-蒽醌蒸煮脱除麦草中的木质素。实验比较了不同碱类、不同气体、添加蒽醌对麦草脱木质素和木质素官能团的影响,研究了脱木质素的工艺条件,通过IR谱图、~1H-NMR谱图、色-质联用图谱、官能团测定、差热分析对木质素的结构及木质素的热行为进行了初步分析,建立了脱木质素动力学模型。结果表明:当温度为140 ℃,蒽醌为0.6%,碱浓度为6%,氧压为0.8Mpa,固液比为0.13,保温时间为1.5 hr时,木质素的脱除率可达88%。在相同条件下,分别用氢氧化钠、氢氧化纳-氧和碱-氧-蒽醌蒸煮麦草,其木质素脱除率分别为60.1%、71.5%和81.1%,所得纤维素中木质素含量分别为7.9%、5.6%和3.7%。因此,用碱-氧-蒽醌法蒸煮麦草,其木质素脱除率高,所得纤维素中木质素的含量低,这将有利于降低木质素对纤维素的阻碍作用以及后续实验中纤维素的酶解糖化。首次采用碳铵法回收黑液中的碱。实验比较了碳铵法对黑液碱回收和对脱木质素后的滤液碱回收的情况,探讨了碳铵法碱回收的工艺条件。结果表明:碳铵法对滤液碱回收(回收率为58.6%)的效果要好于对黑液碱回收(回收率为40.2%)的效果,当温度为20 ℃,时间为15min,pH 为7,碳酸氢铵为0.45mol/l,搅拌速度为100r/min时,回收率可达78%,与传统的黑液先浓缩、再燃烧、再苛化的碱回收方法相比,该法设备简单、耗能低,具有一定的工业应用价值。此外,还探讨了分离木质素和碱回收后的半纤维素降解液微生物乙醇发酵的可能性。木质素是一种以苯丙烷单体为骨架的高分子聚合物,碳含量较高,可作为制备木质素基碳纤维的原料,但由于其聚合度较高、分子流动性能较差,不能直接用于碳纤维的纺丝,因此,需要对其进行分子调制。实验首次应用电解加氢技术对木质素进行分子改善,以软化点、氢含量和氢碳比作为木质素电解加氢效果的指标,研究了电极材料如镍、石墨、铅、泡沫状铅、电解溶剂如四氢呋喃、乙二铵、乙腈、二甲基甲酰铵,电解槽类型等对木质素电解加氢的影响;探讨了木质素在二甲基甲酰铵(DMF)-乙醇(CH_3OH)-四丁基溴化铵(Bu_4NBr)-水(H_2O)电解体系中的加氢工艺条件。通过IR谱图、~1H-NMR 谱图和伏安法(电流-电位曲线)分析推测了氢化木质素的结构和电解加氢反应机理,建立了木质素电解加氢反应动力学模型。结果表明:当[DMF]:[EtOH]:[H_2O]为1:0.7:3.9(浓度比),[Bu_4NBr]为0.17M,木质素为45.5g/1,阴极电位V(vs. SCE)为-2.3V,电解温度为40 ℃,电解时间为8hr时,氢化木质素的软化点可降低24 ℃,氢含量和氢碳比可提高1.7和0.04。经分析推测认为木质素电解加氢是一个先形成木质素自由基、进而形成氢化木质素自由基和氢化木质素产物的过程,木质素经电解加氢后其脂肪性增加,芳香性降低。以麦草经碱-氧-蒽醌蒸煮脱木质素后所得的纤维素为原料,用纤维素酶在乙酸-乙酸钠缓冲溶液中酶解纤维素。实验研究了纤维素酶解的影响因素和纤维素中木质素含量对纤维素酶解的影响,通过IR谱图分析了酶解纤维素的结构。结果表明:当温度为45~50 ℃、起始pH为4.4、底物与酶量之比为1:0.02、时间为30h、转速为100r/min时,纤维素酶解率和纤维素中木质素脱除率分别达到74.5%和19.2%。研究还表明:纤维素中木质素含量越低,纤维素的酶解率越高。麦草通过碱-氧-蒽醌蒸煮脱木质素后,可极大地降低纤维素中木质素的含量,减少木质素对纤维素的阻碍作用,增加纤维素酶对纤维素进行酶解的可及性,提高纤维素的酶解率。柠檬酸发酵所用的原料大多使用淀粉、蔗糖和糖蜜等物质,很少有研究报道用纤维素酶解液为发酵原料。实验中以上述纤维素酶解液为发酵原料,经黑曲霉微生物发酵后制取柠檬酸,讨论了柠檬酸发酵的影响因素,研究了30 ℃下的恒温发酵过程和从30 ℃到40 ℃之间的周期变温振荡刺激发酵过程,并对二者的柠檬酸发酵进行了比较。结果表明:影响柠檬酸发酵的主要因素有温度、pH、接菌量、氮源、磷酸二氢钾浓度等,添加微量元素如Mg~(2+)、Fe~(2+)有利于柠檬酸发酵,添加低级醇如甲醇、乙醇也有利于产酸,但添加甲醇的效果要好于添加乙醇。当温度为30 ℃、初始pH为5.6、接菌量为1 * 10~5(amount/ml)、NH_4NO_3 为0.3%、Mg~(2+)为300ppm、Fe~(2+)为10ppm、甲醇为2%、发酵时间为 120h时,产酸量达8.97g/1。在恒温发酵过程中,0~8h为孢子萌发期,8~24h为菌体对数生长期,24~120h为菌体生长缓慢期,而发酵24h以后,主要是产酸期。同时进行的周期变温操作研究认为:周期变温振荡刺激有利于菌体的生长,它对柠檬酸发酵初期有利,但随着发酵时间的延长,周期变温发酵柠檬酸产量不如恒温发酵,这可能是由于周期变温发酵实验所选的温度范围不适或者是发酵周期不当所致。这也说明外界温度的变化对柠檬酸发酵有一定的影响,这对实际的工业应用过程有较大的参考价值。
英文摘要By means of photosynthesis, lignocellulose, which is one of the inexhaustible and rich reproducible resources, is supplied along with renewal and propagation of plants every year. In nature, lignocellulose called a kind of non-contaminative industrial material is mainly composed of lignin, cellulose and hemicellulose that can be converted into chemical, biologic, medical and food products respectively. But, it is very difficult for three components to be utilized fully because they interweave together in lignocellulose with great differences in their structures and properties. Especially, there is a strong conditionality among three components. Therefore, it is important to separate three components in lignocellulose in order to realize total utilization of lignocellulose biomass and solve the crisises on mineral energy, foodstuff and environment which mankind face, The key to break through total utilization of lignocellulose biomass is separation of three components effectively. Based on the theory of separation of three components and total utilization of lignocellulose biomass, this work attempts to develop a route of separating and utilizing three components in lignocellulose totally. Generally, lignocellulose is mainly used in paper-making industry by alkali or acid pulping. Afterward, alkali-anthraquinone and alkali-oxygen pulping have been developed. However, whose aim is to improve yields of pulp and only use cellulose to make papers. In order to make full use of lignocellulose biomass, wheat straw regarded as a lignocellulose raw material was cooked by alkali-oxygen-anthraquinone. The effects of different kinds of alkalis and gases on delignification and technical conditions were discussed. When temperature was 140 ℃, concentration of anthraquinone was 0.6%, concentration of alkali was 6%, pressure of oxygen was 0.8Mpa, rate of solid to liquid was 0.13 and time of heat preservation was 1.5 hr, rate of delignification was 88%. According to IR spectrum, ~1H-NMR spectrum, chromatogram-mass spectrum, organic groups and differential thermal analysis the structure and thermoprocess of lignin were analyzed. Moreover, the dynamics models during the process of delignification were developed as well. Compared with other separation methods, cooking wheat straw by alkali-oxygen-anthraquinone shows advantages of higher rate of delignification and lower lignin content in cellulose. So, it decreases the counterwork that lignin acts on cellulose and hemicellulose. Furthermore, it is beneficial to hydrolyzing cellulose by cellulase and degrading hemicellulose.
语种中文
公开日期2013-09-27
页码150
内容类型学位论文
源URL[http://ir.ipe.ac.cn/handle/122111/1998]  
专题过程工程研究所_研究所(批量导入)
推荐引用方式
GB/T 7714
张建安. 木质纤维组份分离及其应用研究[D]. 中国科学院研究生院. 1999.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace