Charged porous asymmetric membrane for enhancing salinity gradient energy conversion
Hou, Shuhua1,2,3; Zhang, Qianru4,5; Zhang, Zhen1,5; Kong, Xiangyu1,5; Lu, Benzhuo4,5; Wen, Liping1,5; Jiang, Lei1,5
刊名NANO ENERGY
2021
卷号79页码:9
关键词Uniport ions Asymmetric electric potential Ion transport Salinity gradient energy
ISSN号2211-2855
DOI10.1016/j.nanoen.2020.105509
英文摘要Salinity gradient energy is an abundant renewable energy source that can help satisfy the growing global demand for energy. Although current approaches based on membrane design for salinity gradient energy conversion have been demonstrated to improve conversion efficiency they suffer from the trade-off between selectivity and intrinsic resistance of the membranes, which impedes the rates of energy conversion. In this study, a charged porous asymmetric membrane was fabricated, consisting of a thin charged nanopore (similar to 1 nm) layer and a charged porous structure (80-100 nm) layer. Its asymmetric electric potential and charged porous structure increase its affinity to uniport of ions and enables high ion conductivity. While maintaining a high degree of selectivity, the membrane exhibited an intrinsic membrane resistance of 0.53 +/- 0.12 Omega.cm(2), which was lower than that of the commercial and other reported membranes. The maximum power density reached up to 12.5 W/m(2) with a 500-fold salinity gradient. This membrane shows great promise in industrialization and provides new insights into high salinity energy conversion.
资助项目National Key R&D Program of China[2017YFA0206904] ; National Key R&D Program of China[2017YFA0206900] ; National Key R&D Program of China[2016YFB0201304] ; National Natural Science Foundation of China[21625303] ; National Natural Science Foundation of China[51673206] ; National Natural Science Foundation of China[21434003] ; National Natural Science Foundation of China[11771435] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA2010213] ; Beijing Natural Science Foundation[2194088] ; Beijing Municipal Science & Technology Commission[Z181100004418013] ; Key Research Program of the Chinese Academy of Sciences[QYZDY-SSW-SLH014] ; Key Laboratory of Bio-inspired Materials and Interfacial Science, TIPC, CAS
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
语种英语
出版者ELSEVIER
WOS记录号WOS:000620325300002
内容类型期刊论文
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/58122]  
专题中国科学院数学与系统科学研究院
通讯作者Lu, Benzhuo; Wen, Liping
作者单位1.Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
2.Bohai Univ, Dept Chem, Jinzhou 121013, Peoples R China
3.Beihang Univ, Sch Chem, Beijing 100191, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Hou, Shuhua,Zhang, Qianru,Zhang, Zhen,et al. Charged porous asymmetric membrane for enhancing salinity gradient energy conversion[J]. NANO ENERGY,2021,79:9.
APA Hou, Shuhua.,Zhang, Qianru.,Zhang, Zhen.,Kong, Xiangyu.,Lu, Benzhuo.,...&Jiang, Lei.(2021).Charged porous asymmetric membrane for enhancing salinity gradient energy conversion.NANO ENERGY,79,9.
MLA Hou, Shuhua,et al."Charged porous asymmetric membrane for enhancing salinity gradient energy conversion".NANO ENERGY 79(2021):9.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace