Trace element partitioning between amphibole and hydrous silicate glasses at 0.6-2.6 GPa
Bo Zhang;  Xianxu Hu;  Peng Li;  Qizhe Tang;  Wenge Zhou
刊名Acta Geochimica
2019
卷号38期号:3页码:414-429
关键词Amphibole Silicate Glass Trace Elements Partition Coefficients Lattice Strain Model
英文摘要

Partitioning behavior between amphibole and silicate glass of thirty-three minor and trace elements (Sc, Ti, V, Cr, Co, Rb, Sr, P, Y, Zr, Nb, Cs, Ba, K, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th, and U) have been determined experimentally. Products of crystallization of hydrous basalt melts from 0.6 GPa/860 °C up to 2.6 GPa/970 °C were obtained in a multi-anvil apparatus. Major and trace element compositions of amphibole and glass were determined with a combination of electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The main mineral phase is calcic amphibole, and the coexisting glass compositions are tonalite, granodiorite, and granite. The compatibility of rare earth elements increase at 915 °C and then decrease at 970 °C, but the compatibility of most of these elements shows a continued, significant increase with increasing pressure. For high-field strength elements, large ion lithophile elements, actinide compatibility decrease with increasing temperature or pressure, but transition metals show a continued increase in compatibility within the temperature–pressure conditions. From mathematical and graphical fitting, we determined best-fit values for the ideal ionic radius (r0, 1.01–1.04 Å), the strain-free partition coefficient (D0, 1.18–1.58), and apparent Young’s modulus (E, 142–370 GPa) for the M4 site in amphibole according to the lattice strain model. The DM40D0M4 for rare earth elements rises at 915 °C and then drops at 970 °C at 0.6 GPa. However, the DM40D0M4 values are positively proportional to the pressure for rare earth elements in the amphibole-glass pairs at 0.6–2.6 GPa and 970 °C. Furthermore, the derived best-fit values for rM40r0M4 and EM4EM4 are almost constant and trend to increase with rising temperature and pressure, respectively. The partition coefficient is distinctly different for different melt compositions. The rare earth elements become more enriched in amphibole if the quenched glass is granodiorite or granite compared to the tonalitic glasses.

语种英语
内容类型期刊论文
源URL[http://ir.gyig.ac.cn/handle/42920512-1/10355]  
专题地球化学研究所_地球内部物质高温高压实验室
作者单位1.Guizhou University of Finance and Economics, Guiyang 550025, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Key Laboratory for High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
推荐引用方式
GB/T 7714
Bo Zhang;Xianxu Hu;Peng Li;Qizhe Tang;Wenge Zhou. Trace element partitioning between amphibole and hydrous silicate glasses at 0.6-2.6 GPa[J]. Acta Geochimica,2019,38(3):414-429.
APA Bo Zhang;Xianxu Hu;Peng Li;Qizhe Tang;Wenge Zhou.(2019).Trace element partitioning between amphibole and hydrous silicate glasses at 0.6-2.6 GPa.Acta Geochimica,38(3),414-429.
MLA Bo Zhang;Xianxu Hu;Peng Li;Qizhe Tang;Wenge Zhou."Trace element partitioning between amphibole and hydrous silicate glasses at 0.6-2.6 GPa".Acta Geochimica 38.3(2019):414-429.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace