Comparative analysis of the CO2 emissions of expressway and arterial road traffic: A case in Beijing
Zheng, Ji1,2; Dong, Suocheng1,2; Hu, Yingjie3; Li, Yu1,2
刊名PLOS ONE
2020-04-14
卷号15期号:4页码:15
ISSN号1932-6203
DOI10.1371/journal.pone.0231536
通讯作者Li, Yu(liy@igsnrr.ac.cn)
英文摘要Urban traffic is an important source of global CO2 emissions. Uncovering the temporal and structural characteristics can provide scientific support to identify the variation regulation and main subjects of urban traffic CO2 emissions. The road class is one of the most important factors influencing the urban traffic CO2 emissions. Based on the annual traffic field monitoring work in 2014 and the localized MOVES model, this study unravels the temporal variation and structural characteristics of the urban traffic CO2 emissions and conducts a comparative analysis of expressway (5R) and arterial road (DB), two typical classes of urban roads in Beijing. Obvious differences exist in the temporal variation characteristics of the traffic CO2 emissions between the expressway and arterial road at the annual, week and daily scales. The annual traffic CO2 emissions at the expressway (5R, with 47271.15 t) are more than ten times than those of the arterial road (DB, with 4139.19 t). Stronger weekly "rest effect" is observed at the expressway than the arterial road. The daily peak time and duration of the traffic CO2 emissions between the two classes of urban roads show significant differences particular in the evening peak. The differences of the structural characteristics between the two classes of urban roads are mainly reflected on the contribution of the public and freight transportation. Passenger vehicles play a predominant role at both the two classes of urban roads. The public transportation contributed more at DB (24.76%) than 5R (5.47%), and the freight transportation contributed more at 5R (23.41%) than DB (3.49%). The results suggest that the influence of traffic CO2 emissions on the CO2 flux is significant at the residential and commercial mixed underlying urban areas with arterial roads (DB) but not significant at the underlying urban park area with expressway (5R) in this study. The vegetation cover in urban areas have effects on the CO2 reduction. Increasing the design and construction of the green space along the urban roads with busy traffic flow will be an effective way to mitigate the urban traffic CO2 emissions and build the low-carbon cities.
资助项目National Natural Science Foundation of China[41771182] ; National Natural Science Foundation of China[41271186] ; National Natural Science Foundation of China[41801220] ; Science & Technology Basic Resources Investigation Program of China[2017FY101303]
WOS关键词FOREST ECOSYSTEMS ; VEHICLE EMISSIONS ; PASSENGER CARS ; URBAN ; CARBON ; EXCHANGE ; TRANSPORT ; LEVEL ; BEHAVIOR ; IMPACT
WOS研究方向Science & Technology - Other Topics
语种英语
出版者PUBLIC LIBRARY SCIENCE
WOS记录号WOS:000535997100043
资助机构National Natural Science Foundation of China ; Science & Technology Basic Resources Investigation Program of China
内容类型期刊论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/159530]  
专题中国科学院地理科学与资源研究所
通讯作者Li, Yu
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Jiangxi Normal Univ, Coll City Construct, Nanchang, Jiangxi, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Ji,Dong, Suocheng,Hu, Yingjie,et al. Comparative analysis of the CO2 emissions of expressway and arterial road traffic: A case in Beijing[J]. PLOS ONE,2020,15(4):15.
APA Zheng, Ji,Dong, Suocheng,Hu, Yingjie,&Li, Yu.(2020).Comparative analysis of the CO2 emissions of expressway and arterial road traffic: A case in Beijing.PLOS ONE,15(4),15.
MLA Zheng, Ji,et al."Comparative analysis of the CO2 emissions of expressway and arterial road traffic: A case in Beijing".PLOS ONE 15.4(2020):15.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace