题名基于人工神经网络的物性预测与反应流场重构研究
作者李波
答辩日期2021-05
文献子类博士
授予单位中国科学院大学
授予地点北京
导师范学军
关键词计算流体力学,人工神经网络,真实气体物性预测,全流场重构,燃烧热释放速率重构
其他题名Research on the property prediction and the reaction flow field reconstruction based on artificial neural network
学位专业流体力学
英文摘要

    超声速燃烧与推进技术是实现高超声速飞行的关键问题之一。随着飞行马赫数的提高,CFD (Computational Fluid Dynamics)方法有效的补充了实验测量手段的不足。然而,随着湍流模型和数值格式的不断完善,超燃研究面临一些传统研究手段无法攻破的难题,且计算效率已经成为限制CFD方法用于工程问题的主要因素之一。另外,机器学习具有优异的大数据处理能力,其在建模、降维及优化设计等方面已经展现出巨大的潜力。在这样的研究背景下,本文以数值模拟为基础和主要数据来源,以ANN (Artificial Neural Network)模型和POD (Proper Orthogonal Decomposition)技术为主要研究手段,从微观到宏观,针对超临界条件下真实气体物性求解问题、全流场重构问题以及燃烧热释放速率预测问题开展相关研究。

    首先,在已有astroFoam计算平台的基础上,基于误差反向传播算法,本文成功搭建了一套具有三个隐含层结构的人工神经网络训练模型。另外,为了实现该ANN训练模型在CFD算例中的应用,本文成功地将上述发展的ANN训练模型框架耦合进了OpenFOAM计算平台,实现了模型训练过程和训练结果调用过程的灵活切换。

    针对超临界条件下,复杂碳氢燃料真实气体物性求解效率不高且计算代价过于昂贵的难题,本文提出一种高效而准确的ANN物性预测方法。并且以煤油燃料为例,对其3510三种组分替代模型分别进行了ANN物性建模。结果分析显示,替代模型的组分数越多,对应ANN物性预测模型的网络拓扑结构越为复杂;每个ANN物性预测模型的预测精度均能满足要求,相关系数高达0.99以上;与ECS (Extend Corresponding State)方法相比,单独求解物性时,该ANN物性预测模型的效率可达到ECS求解效率的104倍,且煤油替代模型的组分数越多,加速比越高。另外,本文通过对超临界煤油射流进行三维数值模拟,实现了该ANN物性预测模型与CFD算例的耦合。结果分析表明,该ANN物性计算模型可以准确地预测射流核心区长度,涡破碎位置,涡量分布以及温度和密度分布等,证实了该ANN物性预测模型用于三维数值模拟的准确可靠性;通过统计分析,发现对于本文CFD算例,采用ANN物性预测模型与ECS法则相比,计算加速比可达35.52%,且计算加速比随着计算网格总数量的增加而增大。

    高保真数值模拟用于优化设计不仅花费巨大、设计周期过长,而且不能做到实时预报。针对上述难题,本研究耦合计算流体力学、数据降维模型、统计学以及人工神经网络模型,提出一种基于ANN模型与CPOD (Common Proper Orthogonal Decomposition) 技术的准确且高效的全流场实时重构模型,用以预测包含丰富时空物理机制的全流场数据集,以提高在全设计空间范围内进行有效优化设计的效率。该模型实现过程主要包括:CPOD数据降维过程、基模态筛选过程、ANN训练过程以及预测重构性能分析过程等。并且以圆柱绕流和前台阶流动对该流场重构模型的可行性、准确性和高效性进行了验证。结果分析表明,整体上看该ANN全流场重构模型具有较高的准确性,但对于流场结构变化较为明显的设计参数范围,需要通过采样细化以加强对该区域的数据描述;该ANN全流场重构模型加速效果显著,在本算例中分别可达3040倍,且随着问题复杂性的提高,采用该ANN全流场重构模型的计算加速效率将大大提高。

    优化燃烧释热分布是控制超燃、亚燃模态,提高燃烧效率和增加发动力推力的关键。但由于燃烧环境恶劣且燃烧过程包含太多复杂的物理化学过程,目前尚没有实验手段可以直接测量释热分布,且现存的预测模型也止步于定性分析。因此,基于POD数据降维技术和ANN数据驱动模型,本研究新提出一种燃烧热释放速率重构模型,以达到从实验可测化学发光元素方便、高效、定量的预测燃烧热释放速率空间分布的目的。主要实施过程包括:采用POD技术提取燃烧场的主要物理信息,随后通过一定的模态筛选方法达到对具有时空高分辨率的燃烧场数据进行降维、压缩的目的;通过ANN训练,建立降阶后HRR (Heat release rate)模态系数与化学发光元素OH模态系数之间定量、直接的映射关系;当给定新的化学发光元素OH的分布情况时,仅需要求解新状态下化学发光元素的模态系数,直接调用训练好的ANN模型预测出对应状态下燃烧释热率的模态系数,最终由新的HRR系数与原来的HRR基模态组合,即可重构新状态下HRR的分布情况。本研究以超声速氢氧燃烧扩散火焰为例,对该ANN-POD燃烧热释放速率重构模型的可靠性进行了验证。

语种中文
内容类型学位论文
源URL[http://dspace.imech.ac.cn/handle/311007/86530]  
专题力学研究所_高温气体动力学国家重点实验室
推荐引用方式
GB/T 7714
李波. 基于人工神经网络的物性预测与反应流场重构研究[D]. 北京. 中国科学院大学. 2021.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace