Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy
Lin, Tingting2,3,4; Zhao, Pengfei1,2; Jiang, Yifan2; Tang, Yisi2; Jin, Hongyue2; Pan, Zhenzhen2; He, Huining3; Yang, Victor C.3,5; Huang, Yongzhuo2
刊名ACS NANO
2016-11
卷号10期号:11页码:9999-10012
关键词albumin nanoparticle albumin-binding protein brain tumor targeting SPARC gp60 cell-penetrating peptide biomimetic delivery
ISSN号1936-0851
DOI10.1021/acsnano.6b04268
文献子类Article
英文摘要Nutrient transporters have been explored for biomimetic delivery targeting the brain. The albumin-binding proteins (e.g., SPARC and gp60) are overexpressed in many tumors for transport of albumin as an amino acid and an energy source for fast-growing cancer cells. However, their application in brain delivery has rarely been investigated. In this work, SPARC and gp60 overexpression was found on glioma and tumor vessel endothelium; therefore, such pathways were explored for use in brain-targeting biomimetic delivery. We developed a green method for blood-brain barrier (BBB)-penetrating albumin nanoparticle synthesis, with the capacity to coencapsulate different drugs and no need for cross-linkers. The hydrophobic drugs (i.e., paclitaxel and fenretinide) yield synergistic effects to induce albumin self-assembly, forming dual drug loaded nanoparticles. The albumin nanoparticles can penetrate the BBB and target glioma cells via the mechanisms of SPARC- and gp60-mediated biomimetic transport. Importantly, by modification with the cell-penetrating peptide LMWP, the albumin nanoparticles display enhanced BBB penetration, intratumoral infiltration, and cellular uptake. The LMWP-modified nanoparticles exhibited improved treatment outcomes in both subcutaneous and intracranial glioma models, with reduced toxic side effects. The therapeutic mechanisms were associated with induction of apoptosis, antiangiogenesis, and tumor immune microenvironment regulation. It provides a facile method for dual drug-loaded albumin nanoparticle preparation and a promising avenue for biomimetic delivery targeting the brain tumor based on combination therapy.
资助项目National Basic Research Program of China (973 Program)[2013CB932503] ; National Basic Research Program of China (973 Program)[2014CB931900] ; NSFC, China[81172996] ; NSFC, China[81373357] ; NSFC, China[81422048] ; NSFC, China[81673382] ; NSFC, China[81521005] ; NSFC, China[81361140344]
WOS关键词SOLID TUMORS ; ENDOTHELIAL-CELLS ; GENE DELIVERY ; CANCER ; PEPTIDES ; EXPRESSION ; PACLITAXEL ; RECEPTOR ; TAT
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
语种英语
出版者AMER CHEMICAL SOC
WOS记录号WOS:000388913100028
内容类型期刊论文
源URL[http://119.78.100.183/handle/2S10ELR8/275829]  
专题药物制剂研究中心
通讯作者Huang, Yongzhuo
作者单位1.Nanchang Univ, Coll Pharm, 461 Bayi Rd, Nanchang 330006, Peoples R China;
2.Chinese Acad Sci, Shanghai Inst Mat Med, 501 Haike Rd, Shanghai 201203, Peoples R China;
3.Tianjin Med Univ, Tianjin Key Lab Technol Enabling Dev Clin Therape, Sch Pharm, Tianjin 300070, Peoples R China;
4.Binzhou Med Univ Hosp, Dept Pharm, 661 Huanghe Rd, Binzhou 256603, Peoples R China;
5.Univ Michigan, Coll Pharm, 428 Church St, Ann Arbor, MI 48108 USA
推荐引用方式
GB/T 7714
Lin, Tingting,Zhao, Pengfei,Jiang, Yifan,et al. Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy[J]. ACS NANO,2016,10(11):9999-10012.
APA Lin, Tingting.,Zhao, Pengfei.,Jiang, Yifan.,Tang, Yisi.,Jin, Hongyue.,...&Huang, Yongzhuo.(2016).Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy.ACS NANO,10(11),9999-10012.
MLA Lin, Tingting,et al."Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy".ACS NANO 10.11(2016):9999-10012.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace