Interspecies Electron Transfer via Hydrogen and Formate Rather than Direct Electrical Connections in Cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens
通讯作者Rotaru, AE (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.,arotaru@microbio.umass.edu
学科主题Biotechnology & Applied Microbiology ; Microbiology
关键词Anaerobic-bacteria Gene-expression Oxide Reduction Fe(Iii) Acetate Metabolism Butyrate Genome Environments Respiration
出处APPLIED AND ENVIRONMENTAL MICROBIOLOGY
ISSN号0099-2240
2012
卷号78期号:21页码:7645-7651
产权排序[Rotaru, Amelia-Elena; Shrestha, Pravin M.; Liu, Fanghua; Ueki, Toshiyuki; Nevin, Kelly; Summers, Zarath M.; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA
资助机构Office of Science (BER), U.S. Department of Energy [DE-SC0004485]
英文摘要Direct interspecies electron transfer (DIET) is an alternative to interspecies H-2/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted with Pelobacter carbinolicus, a close relative of Geobacter metallireducens, which is capable of DIET. P. carbinolicus grew in coculture with Geobacter sulfurreducens with ethanol as the electron donor and fumarate as the electron acceptor, conditions under which G. sulfurreducens formed direct electrical connections with G. metallireducens. In contrast to the cell aggregation associated with DIET, P. carbinolicus and G. sulfurreducens did not aggregate. Attempts to initiate cocultures with a genetically modified strain of G. sulfurreducens incapable of both H-2 and formate utilization were unsuccessful, whereas cocultures readily grew with mutant strains capable of formate but not H-2 uptake or vice versa. The hydrogenase mutant of G. sulfurreducens compensated, in cocultures, with significantly increased formate dehydrogenase gene expression. In contrast, the transcript abundance of a hydrogenase gene was comparable in cocultures with that for the formate dehydrogenase mutant of G. sulfurreducens or the wild type, suggesting that H-2 was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains of G. sulfurreducens that could not produce pili or OmcS, two essential components for DIET. The finding that P. carbinolicus exchanged electrons with G. sulfurreducens via interspecies transfer of H-2/formate rather than DIET demonstrates that not all microorganisms that can grow syntrophically are capable of DIET and that closely related microorganisms may use significantly different strategies for interspecies electron exchange.
语种英语
内容类型共享期刊论文
源URL[http://ir.yic.ac.cn/handle/133337/6311]  
专题烟台海岸带研究所_科研共享资源
推荐引用方式
GB/T 7714
. Interspecies Electron Transfer via Hydrogen and Formate Rather than Direct Electrical Connections in Cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. 2012.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace