CORC  > 昆明植物研究所  > 中国科学院昆明植物研究所  > 离退休
Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides - Oliver at an atomic resolution
Xiang, Y; Huang, RH; Liu, XZ; Zhang, Y; Wang, DC
刊名JOURNAL OF STRUCTURAL BIOLOGY
2004-10-01
卷号148期号:1页码:86-97
关键词Eucommia antifungal protein atomic resolution crystallography direct methods five-disulfide-bond motif structure-function relationship
ISSN号1047-8477
通讯作者dcwang@sun5.ibp.ac.cn
英文摘要EAFP2 is a novel antifungal protein isolated from the bark of the tree Eucommia ulmoides Oliver. It consists of 41 residues and is characterized with a five-disulfide motif and the inhibitory effects on the growth of both cell wall chitin-containing and chitin-free fungi. The crystal structure of EAFP2 at an atomic resolution of 0.84 Angstrom has been determined by using Shake-and-Bake direct methods with the program SnB. The phases obtained were of sufficient quality to permit the initial model built automatically and the structural refinement carried out using anisotropic displacement parameters resulted in a final crystallographic R factor of 6.8%. In the resulting structural model, all non-hydrogen protein atoms including an unusual pyroglutamyl acid residue at the N-terminal can fit to the articulated electron densities with one centre and more than 65% of the hydrogen atoms in the protein can be observed as individual peaks in the difference map. The general fold of EAFP2 is composed of a 3(10) helix (Cys3-Arg6), an alpha-helix (Ala27-Cys31) and a three-stranded antiparallel beta-sheet (Cys16-Ser18, Cys23-Ser25, and Cys35-Cys37) and cross-linked by five disulfide bridges. The tertiary structure of EAFP2 can be divided into two structural sectors, A and B. Sector A composed of residues 11-30 adopts a conformation similar to the chitin-binding domain in the hevein-like proteins and features a hydrophobic surface embraced a chitin-binding site (Tyr20, 22, 29, and Ser18). The distinct disulfide bridge Cys7-Cys37 connects the N-terminal ten residues with the C-terminal segment 35-41 to form the sector B, which features a cationic surface distributing all four positively charged residues, Arg6, 9, 36, and 40. Based on these structural features, the possible structural basis of the functional properties of EAFP2 is discussed. (C) 2004 Elsevier Inc. All rights reserved.
学科主题Biochemistry & Molecular Biology; Biophysics; Cell Biology
类目[WOS]Biochemistry & Molecular Biology ; Biophysics ; Cell Biology
研究领域[WOS]Biochemistry & Molecular Biology ; Biophysics ; Cell Biology
关键词[WOS]WHEAT-GERM-AGGLUTININ ; URTICA-DIOICA AGGLUTININ ; CHITIN-BINDING PROTEINS ; ANTIMICROBIAL PEPTIDES ; AMARANTHUS-CAUDATUS ; HEVEIN ; SEQUENCE ; REFINEMENT ; COMPLEX ; ISOLECTIN
收录类别SCI
语种英语
WOS记录号WOS:000224065100007
公开日期2012-07-04
内容类型期刊论文
源URL[http://ir.kib.ac.cn:8080/handle/151853/13539]  
专题昆明植物研究所_离退休
作者单位1.Chinese Acad Sci, Inst Biophys, Ctr Struct & Mol Biol, Beijing 100101, Peoples R China
2.Chinese Acad Sci, Kunming Inst Bot, Kunming 650204, Peoples R China
推荐引用方式
GB/T 7714
Xiang, Y,Huang, RH,Liu, XZ,et al. Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides - Oliver at an atomic resolution[J]. JOURNAL OF STRUCTURAL BIOLOGY,2004,148(1):86-97.
APA Xiang, Y,Huang, RH,Liu, XZ,Zhang, Y,&Wang, DC.(2004).Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides - Oliver at an atomic resolution.JOURNAL OF STRUCTURAL BIOLOGY,148(1),86-97.
MLA Xiang, Y,et al."Crystal structure of a novel antifungal protein distinct with five disulfide bridges from Eucommia ulmoides - Oliver at an atomic resolution".JOURNAL OF STRUCTURAL BIOLOGY 148.1(2004):86-97.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace