CORC  > 金属研究所  > 中国科学院金属研究所
题名镍基和铪基块体金属玻璃的形成能力与力学性能
作者张丽
学位类别博士
答辩日期2008-12-18
授予单位中国科学院金属研究所
授予地点金属研究所
导师牛焱
关键词金属玻璃 压缩力学性能 弹性常数 Ni合金 Hf合金
其他题名Glass Forming Ability and Mechanical Properties for Ni- and Hf-based Bulk Metallic Glasses
学位专业材料学
中文摘要金属玻璃中的原子排列具有长程无序、短程有序的结构特征,因而表现出许多优于传统晶态金属材料的性能,诸如高强度、高硬度、高弹性极限、高比强度、耐腐蚀等。合金的玻璃形成能力(GFA)和宏观力学性能是发展具有工程应用前景的块体金属玻璃(BMG)的关键。在现已发现的BMG材料家族中,Ni基BMG具有超高断裂强度、高热稳定性、耐腐蚀和抗磨损等优异性能;Hf基BMG具有高质量密度和相对贵金属更廉价的特点,成为穿甲弹芯材料的候选材料。然而,合金的GFA和BMG的宏观塑性仍有待于进一步提高。本工作系统地研究了Ni–Nb–Sn基、Hf–Ni–Al和Hf–Cu–Ni–Al基合金的GFA以及元素添加影响合金GFA的冶金学因素。在获得具有高GFA的形成BMG合金同时,进一步系统地研究了BMG的力学性能对成分变化的依赖性,探索发展高GFA兼有良好宏观塑性BMG的途径。主要内容与结论如下: 1. 在Ni–Nb–Sn三元系中,铜模浇铸形成2 mm直径BMG的成分范围为54~62 at.% Ni、32~36 at.% Nb和3~11 at.% Sn。以Ni–Nb–Sn三元合金为基础,由Co部分替代Ni(Ni1-xCox,0.05≤x≤0.15),利用“3D法”,可将形成BMG的临界直径(Dc)提高至3 mm。进一步由Hf元素部分替代Ni56Co3Nb36Sn5中的Nb元素所形成的Ni56Co3Nb28Hf8Sn5五元合金,Dc可提高至4 mm。熔体缓慢冷却三元Ni59Nb35Sn6、四元Ni51Co9Nb33Sn7和五元Ni56Co3Nb28Hf8Sn5合金的凝固组织表征证实, Co和Hf的添加并未改变合金熔体结晶的相选择规律和与形成BMG相关联的三相共晶反应,GFA的提高归因于Co和Hf的引入有效地稳定了过冷液体,抑制了竞争晶体相(如Ni3Nb)的形核与长大。 2. 在Hf–Ni–Al三元系的富Hf成分区域,存在有形成BMG的Dc为3 mm的较宽成分区域,即50~63 at% Hf、20~31 at.% Ni和12~25 at.% Al。该区域内GFA最佳的合金为Hf54Ni28Al18,形成BMG的Dc为4 mm。合金的凝固组织显示,形成BMG的成分与二元共晶反应L→Hf5Ni4Al+Hf6NiAl2相关联。 3. Zr–Cu–Al和Hf–Ni–Al三元富Zr和富Hf成分的BMG表现出较好的压缩塑性。BMG的塑性形变为由单一主剪切带所控制的非均匀形变。计算机模拟结果揭示出塑性较好BMG的结构本源,合金中原子排列成各类二十面体含量的多少决定了原子团簇发生剪切转变的难易程度,表现出不同的塑性形变能力。在一个给定的合金体系内,随着成分的变化,合金的玻璃转变温度Tg和剪切模量G减小,泊松比增大时,屈服强度σy降低,塑性应变量εp增加。这些与原子尺度结构直接相关的参数可以间接地作为发现塑性较好BMG的指南。 4. 在Hf-Cu-Ni-Al四元合金系中,存在有可形成8 mm直径BMG的很宽成分范围,其中,Hf47Cu29.25Ni9.75Al14和Hf48Cu29.25Ni9.75Al13 两个合金形成BMG的Dc可达到10 mm。高GFA与高质量密度的结合(>11 g/cc)使Hf基BMG作为W/BMG复合材料成为可能。形成BMG合金的凝固组织表明,与玻璃形成相关联的共晶反应为两相共晶反应L→CuHf2+HfNiAl。 5. 以Tg和弹性性能随成分变化的趋势为导向,优化出Hf–Cu–Ni–Al四元合金中压缩塑性与GFA兼优的BMG为Hf51Cu27.75Ni9.25Al12(Dc=8 mm,σy为2380~2440 MPa,εp约为5~6%)。以Hf48Cu29.25Ni9.75Al13和Hf51Cu27.75Ni9.25Al12合金为基础,分别由2 at.% Nb或Ta部分替代合金中的Hf未能引起BMG弹性性能的明显变化。但与基础合金相比,含Nb或Ta的BMG强度增加,塑性形变能力略有降低。对Johnson等给出的不同合金体系BMG的Tg和弹性性能数据分析表明,G与(Tg/Vm)[1-4/9(T/Tg)2/3]之间呈线性关系,表达式为:G=4.9+672 (Tg/Vm)[1-4/9(T/Tg)2/3]。与这一趋势相类似,Hf基BMG的G和约化后的Tg也大致上表现为线性关系,表达式为G=9.9+576 (Tg/Vm)[1-4/9(T/Tg)2/3],Tg与G之间的这种定量关系显示,Tg可粗略地利用于估计G的大小,以作为优化塑性较好的BMG参考依据。
语种中文
公开日期2012-04-10
页码132
内容类型学位论文
源URL[http://ir.imr.ac.cn/handle/321006/17058]  
专题金属研究所_中国科学院金属研究所
推荐引用方式
GB/T 7714
张丽. 镍基和铪基块体金属玻璃的形成能力与力学性能[D]. 金属研究所. 中国科学院金属研究所. 2008.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace