CORC  > 北京大学  > 信息科学技术学院
Study the heat transfer process from electron-phonon nonequilibrium in thin gold film to glass substrate through transient thermoreflectance measurements
Ma, Weigang ; Wang, Haidong ; Zhang, Xing ; Wang, Wei
2010
英文摘要How the energy transfers during electron-phonon nonequilibrium in thin metal films is still an open question, and how to measure the intrinsic thermal transport properties of the material under the covering layer is another challenge. In this paper, the heat transfer process from electron-phonon nonequilibrium in thin gold film to borosilicate glass substrate has been studied by resorting to different segments of the transient thermoreflectance signal, which is obtained from the rear-pump front-probe transient thermoreflectance technique. The gold film, which has a thickness of 23.1 nm, is deposited on the borosilicate glass substrate using using a physical vapor deposition (PVD) approach. Within the framework of the twotemperature model (TTM), the electron-phonon (e-ph) coupling factors of the gold film, which reflect the strength of heat flow from hot electrons to cold phonons, are derived from the signal taken after the first several picoseconds with different pump fluences, and the measured value is (1.95-2.05)??1016 W m-3 K-1. The electron-phonon coupling factor does not significantly change in response to the pump pulse fluence variation and exhibits little change compared to the bulk gold value 2.4?? 10 16 W m-3 K-1. Furthermore, the thermal conductivity of the glass substrate is obtained through the thermoreflectance signal between 20 to 140 picoseconds and the value is 3 W m-1 K -1. Copyright ? 2010 by ASME.; EI; 0
语种英语
DOI标识10.1115/FEDSM-ICNMM2010-30364
内容类型其他
源URL[http://ir.pku.edu.cn/handle/20.500.11897/329576]  
专题信息科学技术学院
推荐引用方式
GB/T 7714
Ma, Weigang,Wang, Haidong,Zhang, Xing,et al. Study the heat transfer process from electron-phonon nonequilibrium in thin gold film to glass substrate through transient thermoreflectance measurements. 2010-01-01.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace