CORC  > 北京大学  > 地球与空间科学学院
Mo deposits in Northwest China: Geology, geochemistry, geochronology and tectonic setting
Wu, Yan-Shuang ; Chen, Yan-Jing ; Zhou, Ke-Fa
刊名ORE GEOLOGY REVIEWS
2017
关键词Northwest China Central Asia Orogenic Belt Mo deposit Ore geology Continental collision Subduction-related accretion ZIRCON U-PB PORPHYRY CU DEPOSIT EASTERN TIANSHAN MOUNTAINS ORE-FORMING FLUIDS CARBONIFEROUS INTRAOCEANIC SUBDUCTION MAFIC-ULTRAMAFIC INTRUSIONS BAISHAN MOLYBDENUM DEPOSIT BEISHAN OROGENIC BELT RE-OS GEOCHRONOLOGY NW-CHINA
DOI10.1016/j.oregeorev.2016.07.010
英文摘要Northwest China, covering northern Xinjiang, northern Gansu and westernmost Inner Mongolia, mainly includes Junggar Basin and its surrounding mountains such as Chinese Altay, Junggar, Chinese Tianshan and Beishan. It lies at the junction of Siberia, Tarim and Kazakhstan plates, and is a key sector of the Central Asian Orogenic Belt (CAOB), characterized by multistage Phanerozoic continental growth. Herein at least nine Mo-only or Mo-dominated, fourteen Cu-Mo, two W-Mo and one Be-Mo deposits have been discovered. These 27 deposits occur in Altay, West Jungar, West Tianshan, East Tianshan and Beishan areas, and have been formed during accretionary or collisional orogenies. The majority of the deposits are porphyry type, followed by the skarn and quartz vein types. The orebodies occur mainly as veins, lens, pods in the positions from inner intrusions through contact zones to the hostrocks distal to causative intrusions. The host-rocks are variable in lithologies, including granites, porphyries, volcanic breccias and tuffs, and sedimentary rocks. Outward from orebodies to hostrocks, the wallrock alteration is zoning from potassic (K-feldspar-quartz-mica), through phyllic (quartz-sericite-chloriteepidote), to propylitic or argillic alterations, with skarn specifically occurring in skarn-type systems. Hydrothermal mineralization generally includes four stages, from early to late, represented by (1) potassic feldspar-quartz veins or veinlets, (2) quartz-molybdenite stockworks, (3) quartz-polymetallic sulfide stockworks, and (4) quartz carbonate fluorite veins or veinlets. The ore-forming fluids were initially magmatic in origin and shew high-temperature and high-salinity, containing daughter mineral- and/or CO2-bearing fluid inclusions; and eventually evolved to low-temperature, low-pressure, low-salinity and CO2-poor meteoric water. The porphyry Mo deposits can be further subdivided into two subtypes, i.e., Dabie- and Endako-types. The Endako-type Mo deposits, e.g., Suyunhe and Hongyuan, together with all the Cu-Mo systems, were formed in the Palaeozoic subduction-related magmatic arcs. The Dabie-type porphyry Mo deposits, represented by giant Donggebi and Baishan, together with the Mo-only, Mo-dominated and W-Mo or Be-Mo deposits were formed in syn- to post-collisional tectonic setting, with isotope ages ranging 260-213.2 Ma, with the Kumutage skarn-type Mo system being an exception aged 319 Ma. The Dabie-type porphyry Mo deposits are characterized by the CO2-bearing fluid inclusions that cannot be observed in the Endako-type porphyry Mo systems. The Re contents in molybdenites from porphyry and porphyry-skam Cu-Mo systems are mainly >100 ppm, suggesting a source significantly contributed by the mantle; whereas the Re contents in molybdenites from the Mo-only or W-Mo deposits are mainly <100 ppm, indicating a genetic relation to the crust-sourced granitic magmatism. Therefore, the types of porphyry Mo deposits and their contrasting geological and geochemical characteristics are a powerful indicator of the tectonic settings; and the available data from the Mo deposits in NW China indicate a Late Carboniferous-Permian transformation from subduction-related accretionary orogeny to continental collision orogeny. (C) 2016 Elsevier B.V. All rights reserved.; 973-Project [2014CB440800, 2014CB448000]; National Nature Science Foundation of China [U1139301, 41572070, 41572077, 41572065]; Major Basic Research Project of Xinjiang Uygur Autonomous Region [201330121]; China Geological Survey [1212011140056, 12120114081701]; SCI(E); ARTICLE; ,SI; 641-671; 81
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/475003]  
专题地球与空间科学学院
推荐引用方式
GB/T 7714
Wu, Yan-Shuang,Chen, Yan-Jing,Zhou, Ke-Fa. Mo deposits in Northwest China: Geology, geochemistry, geochronology and tectonic setting[J]. ORE GEOLOGY REVIEWS,2017.
APA Wu, Yan-Shuang,Chen, Yan-Jing,&Zhou, Ke-Fa.(2017).Mo deposits in Northwest China: Geology, geochemistry, geochronology and tectonic setting.ORE GEOLOGY REVIEWS.
MLA Wu, Yan-Shuang,et al."Mo deposits in Northwest China: Geology, geochemistry, geochronology and tectonic setting".ORE GEOLOGY REVIEWS (2017).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace