CORC  > 北京大学  > 数学科学学院
A High-Order Accurate Gas-Kinetic Scheme for One- and Two-Dimensional Flow Simulation
Liu, Na ; Tang, Huazhong
2014
关键词Gas-kinetic scheme initial reconstruction BGK model Boltzmann equation velocity distribution function ESSENTIALLY NONOSCILLATORY SCHEMES HYPERBOLIC CONSERVATION-LAWS EULER EQUATIONS UNSTRUCTURED GRIDS BASIC FORMULATION
英文摘要This paper develops a high-order accurate gas-kinetic scheme in the framework of the finite volume method for the one- and two-dimensional flow simulations, which is an extension of the third-order accurate gas-kinetic scheme [Q. B. Li, K. Xu, and S. Fu, J. Comput. Phys., 229(2010), 6715-6731] and the second-order accurate gas-kinetic scheme [K. Xu, J. Comput. Phys., 171 (2001), 289-335]. It is formed by two parts: quartic polynomial reconstruction of the macroscopic variables and fourth-order accurate flux evolution. The first part reconstructs a piecewise cell-center based quartic polynomial and a cell-vertex based quartic polynomial according to the "initial" cell average approximation of macroscopic variables to recover locally the non-equilibrium and equilibrium single particle velocity distribution functions around the cell interface. It is in view of the fact that all macroscopic variables become moments of a single particle velocity distribution function in the gas-kinetic theory. The generalized moment limiter is employed there to suppress the possible numerical oscillation. In the second part, the macroscopic flux at the cell interface is evolved in fourth-order accuracy by means of the simple particle transport mechanism in the microscopic level, i.e. free transport and the Bhatnagar-Gross-Krook (BGK) collisions. In other words, the fourth-order flux evolution is based on the solution (i.e. the particle velocity distribution function) of the BGK model for the Boltzmann equation. Several 1D and 2D test problems are numerically solved by using the proposed high-order accurate gas-kinetic scheme. By comparing with the exact solutions or the numerical solutions obtained the second-order or third-order accurate gas-kinetic scheme, the computations demonstrate that our scheme is effective and accurate for simulating invisid and viscous fluid flows, and the accuracy of the high-order GKS depends on the choice of the (numerical) collision time.; Physics, Mathematical; SCI(E); 2; ARTICLE; nliu@pku.edu.cn; hztang@math.pku.edu.cn; 4; 911-943; 15
语种英语
出处SCI
出版者communications in computational physics
内容类型其他
源URL[http://hdl.handle.net/20.500.11897/389588]  
专题数学科学学院
工学院
推荐引用方式
GB/T 7714
Liu, Na,Tang, Huazhong. A High-Order Accurate Gas-Kinetic Scheme for One- and Two-Dimensional Flow Simulation. 2014-01-01.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace