CORC  > 金属研究所  > 中国科学院金属研究所
Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening
Duan, Qi-qiang; Wang, Bin; Zhang, Peng; Yang, Ke; Zhang, Zhe-Feng; Zhang, P; Zhang, ZF (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China.
刊名CAMBRIDGE UNIV PRESS
2017-12-14
卷号32期号:23页码:4424-4432
关键词Fatigue Steel Strength
ISSN号0884-2914
英文摘要Shot-peened CM400 maraging steel was used to study the mechanism of enhanced notch fatigue properties of ultra-high strength materials. After shot peening, the specimen surface became rougher, but the transversal machining traces were reduced. The yield strength was slightly improved while the ultimate tensile strength and hardness maintained constant; as a result, the fatigue limit was promoted by about 1.5 times. The nucleated sites of the fatigue fracture were partly changed from the surface to subsurface/interior of the specimen. To further analyze the influencing factors of fatigue properties, the fatigue damage process may be resolved to two aspects: (a) fatigue damage rate affected by shear deformation and (b) fatigue damage tolerance controlled by the dilatation fracture process. Considering the stress state near the notch tip, the hydrostatic stress and maximum shear stress are considered for better understanding these two aspects. It is observed that the fatigue damage tolerance increased while the fatigue damage rate decreased after shot peening. Therefore, the notch fatigue properties of CM400 maraging steels can effectively be improved.; Shot-peened CM400 maraging steel was used to study the mechanism of enhanced notch fatigue properties of ultra-high strength materials. After shot peening, the specimen surface became rougher, but the transversal machining traces were reduced. The yield strength was slightly improved while the ultimate tensile strength and hardness maintained constant; as a result, the fatigue limit was promoted by about 1.5 times. The nucleated sites of the fatigue fracture were partly changed from the surface to subsurface/interior of the specimen. To further analyze the influencing factors of fatigue properties, the fatigue damage process may be resolved to two aspects: (a) fatigue damage rate affected by shear deformation and (b) fatigue damage tolerance controlled by the dilatation fracture process. Considering the stress state near the notch tip, the hydrostatic stress and maximum shear stress are considered for better understanding these two aspects. It is observed that the fatigue damage tolerance increased while the fatigue damage rate decreased after shot peening. Therefore, the notch fatigue properties of CM400 maraging steels can effectively be improved.
学科主题Materials Science, Multidisciplinary
语种英语
资助机构National Natural Science Foundation of China (NSFC) [51331007, 51301179]
公开日期2018-01-10
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/78935]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhang, P; Zhang, ZF (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China.
推荐引用方式
GB/T 7714
Duan, Qi-qiang,Wang, Bin,Zhang, Peng,et al. Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening[J]. CAMBRIDGE UNIV PRESS,2017,32(23):4424-4432.
APA Duan, Qi-qiang.,Wang, Bin.,Zhang, Peng.,Yang, Ke.,Zhang, Zhe-Feng.,...&Zhang, ZF .(2017).Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening.CAMBRIDGE UNIV PRESS,32(23),4424-4432.
MLA Duan, Qi-qiang,et al."Improvement of notch fatigue properties of ultra-high CM400 maraging steel through shot peening".CAMBRIDGE UNIV PRESS 32.23(2017):4424-4432.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace