CORC  > 金属研究所  > 中国科学院金属研究所
Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account
Sun, XY; Han, P; Li, B; Mao, SJ; Liu, TF; Ali, S; Lian, Z; Su, DS; Su, DS (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
刊名CHEMICAL COMMUNICATIONS
2018-01-25
卷号54期号:8页码:864-875
关键词h Bond Activation Initio Molecular-dynamics Density-functional Theory Vanadium-oxide Catalysts Metal-free Catalysts Nitric-acid Mediated Catalysis Oxygen-adsorption Styrene Synthesis 1st Principles
ISSN号1359-7345
英文摘要Recent progress from first principles computational studies is presented for catalytic properties of nanostructured carbon catalysts in the oxidative dehydrogenation (ODH) reaction of short alkanes. Firstly, a brief introduction is given on the development of carbon catalysts in ODH since 1970. Oxygen functional groups have pivotal importance for ODH on nanostructured carbon catalysts. We discuss the oxidation process by HNO3 on pristine and defective carbon materials. The interactions between the oxygen molecule (oxidant) and the nanostructured carbon catalysts are quantitatively calibrated. Moreover the different nucleophilic abilities of oxygen functional groups are carefully compared and the strongest nucleophilic sites are proposed. The active sites and detailed reaction pathway are revealed from several computational studies. Diketone/quinone groups are generally considered to be the active centers in ODH. A reaction pathway via radical formation is considered as the favorable path. Furthermore, single ketone and carbon sites are verified to be active in ODH from the analysis of aromaticity. Heteroatom doping effects in ODH are examined. Nitrogen doping is found to be very reactive towards oxygen molecule activation. Other dopants such as boron, phosphorous and sulfur also have positive effects on the reactivity of ODH. Extensive calculations suggest that the BEP relation is applicable for the doped nanostructured carbon catalysts. In the end, an outlook for the future direction of the computational study is supplied.; Recent progress from first principles computational studies is presented for catalytic properties of nanostructured carbon catalysts in the oxidative dehydrogenation (ODH) reaction of short alkanes. Firstly, a brief introduction is given on the development of carbon catalysts in ODH since 1970. Oxygen functional groups have pivotal importance for ODH on nanostructured carbon catalysts. We discuss the oxidation process by HNO3 on pristine and defective carbon materials. The interactions between the oxygen molecule (oxidant) and the nanostructured carbon catalysts are quantitatively calibrated. Moreover the different nucleophilic abilities of oxygen functional groups are carefully compared and the strongest nucleophilic sites are proposed. The active sites and detailed reaction pathway are revealed from several computational studies. Diketone/quinone groups are generally considered to be the active centers in ODH. A reaction pathway via radical formation is considered as the favorable path. Furthermore, single ketone and carbon sites are verified to be active in ODH from the analysis of aromaticity. Heteroatom doping effects in ODH are examined. Nitrogen doping is found to be very reactive towards oxygen molecule activation. Other dopants such as boron, phosphorous and sulfur also have positive effects on the reactivity of ODH. Extensive calculations suggest that the BEP relation is applicable for the doped nanostructured carbon catalysts. In the end, an outlook for the future direction of the computational study is supplied.
学科主题Chemistry, Multidisciplinary
语种英语
资助机构NSFC [21573255, 51521091]; Chinese Academy of Sciences [XDA09030103]; LiaoNing Natural Science Foundation [201602676]; Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund [U1501501]
公开日期2018-06-05
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/79565]  
专题金属研究所_中国科学院金属研究所
通讯作者Li, B; Su, DS (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Sun, XY,Han, P,Li, B,et al. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account[J]. CHEMICAL COMMUNICATIONS,2018,54(8):864-875.
APA Sun, XY.,Han, P.,Li, B.,Mao, SJ.,Liu, TF.,...&Su, DS .(2018).Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account.CHEMICAL COMMUNICATIONS,54(8),864-875.
MLA Sun, XY,et al."Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account".CHEMICAL COMMUNICATIONS 54.8(2018):864-875.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace