Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Perot resonator
Zhu, J. M.1; Shi, Y.1; Zhu, X. Q.1; Yang, Y.1; Jiang, F. H.2; Sun, C. J.2; Zhao, W. H.3; Han, X. T.3
刊名LAB ON A CHIP
2017-12-07
卷号17期号:23页码:4025-4030
DOI10.1039/c7lc01016h
文献子类Article
英文摘要Real-time detection of phosphate has significant meaning in marine environmental monitoring and forecasting the occurrence of harmful algal blooms. Conventional monitoring instruments are dependent on artificial sampling and laboratory analysis. They have various shortcomings for real-time applications because of the large equipment size and high production cost, with low target selectivity and the requirement of time-consuming procedures to obtain the detection results. We propose an optofluidic miniaturized analysis chip combined with micro-resonators to achieve real-time phosphate detection. The quantitative water-soluble components are controlled by the flow rate of the phosphate solution, chromogenic agent A (ascorbic acid solution) and chromogenic agent B (12% ammonium molybdate solution, 80% concentrated sulfuric acid and 8% antimony potassium tartrate solution with a volume ratio of 80: 18: 2). Subsequently, an on-chip Fabry-Perot microcavity is formed with a pair of aligned coated fiber facets. With the help of optical feedback, the absorption of phosphate can be enhanced, which can avoid the disadvantages of the macroscale absorption cells in traditional instruments. It can also overcome the difficulties of traditional instruments in terms of size, parallel processing of numerous samples and real-time monitoring, etc. The absorption cell length is shortened to 300 mu m with a detection limit of 0.1 mu mol L-1. The time required for detection is shortened from 20 min to 6 seconds. Predictably, microsensors based on optofluidic technology will have potential in the field of marine environmental monitoring.
语种英语
WOS记录号WOS:000415989600007
内容类型期刊论文
版本出版稿
源URL[http://ir.qdio.ac.cn/handle/337002/143273]  
专题海洋研究所_实验海洋生物学重点实验室
作者单位1.Wuhan Univ, Minist Educ, Key Lab Artificial Micro Nano Struct, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
2.First Inst Oceanog SOA, Qingdao, Peoples R China
3.Chinese Acad Sci, Inst Oceanol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhu, J. M.,Shi, Y.,Zhu, X. Q.,et al. Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Perot resonator[J]. LAB ON A CHIP,2017,17(23):4025-4030.
APA Zhu, J. M..,Shi, Y..,Zhu, X. Q..,Yang, Y..,Jiang, F. H..,...&Han, X. T..(2017).Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Perot resonator.LAB ON A CHIP,17(23),4025-4030.
MLA Zhu, J. M.,et al."Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Perot resonator".LAB ON A CHIP 17.23(2017):4025-4030.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace