题名基于多程位相调制的新型光谱控制技术研究
作者李玉荣
文献子类硕士
导师汪小超
关键词光纤光学 fiber optics 啁啾脉冲放大 chirped pulse amplification 光谱控制 spectrum control 任意波形发生器 high-speed arbitrary waveform generator 位相调制 phase modulation
其他题名Spectral Control Technology Based on Multi-pass Phase Modulation
英文摘要随着高速电子学技术的发展,高速任意脉冲发生技术日益成熟。本文结合高功率激光装置前端系统在光谱控制方面的应用需求,利用高速任意脉冲发生技术,开展了多程位相调制光谱控制技术研究,探索了多档脉冲同源发生的技术方案。主要包括以下工作内容: 1、建立多程位相调制的理论模型,模拟分析调制圈数、调制深度、调制信号宽度、时间同步等关键参数对输出光谱的影响;分析讨论色散控制和位相调制信号产生两个关键过程的主要参数,为后续开展实验研究提供了理论依据。 2、搭建了基于任意脉冲发生技术的多程位相调制实验平台,主要讨论了多程腔的实现、光谱透射函数的平坦化处理、高精度时间同步和实验结果测量几个关键模块的设计。时间同步精度达到<4ps(50圈),并且随着圈数增长保持稳定,提升了有效圈数。 3、基于上述平台,分别对纳秒域和皮秒域时间整形脉冲进行了光谱展宽实验: 1) 对中心波长为1053nm,脉冲宽度为1ns的窄线宽时间整形脉冲进行光谱展宽,调制次数为50时,光谱展宽至0.636nm;实验验证了基于AWG全光纤多程位相调制方案进行灵活光谱控制的能力,通过对调制信号的波形控制, 对调制信号产生过程中的失真导致的光谱畸变进行了修正,获得了理想对称的光谱输出; 2) 对中心波长为1053nm,脉冲宽度为100ps的窄线宽时间整形光脉冲进行光谱展宽,调制次数为50时,光谱展宽至3nm,相比较原技术方案有效提升了有效循环圈数和光谱展宽量; 4、结合高功率激光装置的应用背景,利用基于任意脉冲发生技术的多程位相调制技术开展了两方面的应用实验研究: 1) 利用多程位相调制技术结合色散控制,实现了多档同源脉冲的输出。对窄线宽时间整形脉冲进行光谱展宽,结合色散控制技术,可以同源输出ns整形脉冲、ps探针脉冲和线性啁啾脉冲。多程位相调制技术和色散控制的结合可以突破任意脉冲发生器带宽对整形脉冲输出最小宽度的限制,并且灵活调整,在调制次数30次、25次、20次时,分别得到了小于21ps、26ps、50ps的脉冲宽度输出; 2) 利用时间整形技术配合多程位相调制,获得了带有时间整形能力的啁啾种子源输出。利用线性啁啾时频对应的特性,实现了对宽带脉冲在固体放大过程中出现的增益窄化的灵活补偿; 3) 利用多程位相调制结构,结合20GHz高频微波源,对5ns方波脉冲进行高频位相调制,光谱宽度由单次调制的3.5nm提升至5次调制后的7.7nm,为获得宽光谱激光种子源提供技术方案。; With the development of high-speed electronics technology, high-speed arbitrary pulse generation technology has become more sophisticated. In this paper, combined with the need of front-end system in spectral control, we carry out multi-pass phase modulation spectral control technology research with the use of high-speed arbitrary pulse generation technology, and explore the technology program of generating multi-file homologous pulses. The paper mainly includes the following work: 1. Establish the theoretical model of multi-pass phase modulation. Analyze the influence of key parameters such as modulation circle, modulation depth, time synchronization and other parameters on the output spectrum. The main parameters of two key processes of dispersion control and phase modulation signal generation are analyzed and discussed, which provides a theoretical basis for the follow-up study. 2. Set up the experiment platform of multi-pass phase modulation based on arbitrary pulse generation technique. The design of several key modules is realized, such as the realization of multi-pass cavity, the flat processing of spectral transmission function, high-precision time synchronization and measurement scheme. Time synchronization accuracy of <4ps (50 circles), and remained stable with the circle growth, which enhances the effective number of circles. 3. Carry out spectrum broadening experiments of nanosecond and picosecond pulses based on the platform mentioned above. 1) Through the experiment, the spectrum of 1ns time shaping pulse whose wavelength is 1053nm is broadened to 0.636nm, when the modulation time is 50. Verify The ability of the all-fiber multi-pass phase modulation scheme based on AWG to flexibly control the spectrum. The spectral distortion caused by the distortion of the modulation signal is modified by the waveform control of the modulated signal, and obtain the ideal symmetrical spectral output. 2) The spectrum of 100ps time shaping pulse whose wavelength is 1053nm is broadened to 3nm, when the modulation time is 50, which effectively improves the number of effective cycles and spectral broadening compared with the original scheme. 4、Carry out several application researches of multi-pass phase modulation scheme based on arbitrary pulse generation technology: 1) Achieve the output of multi-file homologous pulses using multi-pass phase modulation technique and dispersion control. Broadening the spectrum of time shaping pulse and using dispersion control technique, nanosecond time shaping pulse、picosecond pulse and linear chirped pulse can be output from the same system. The combination of multi-phase phase modulation technique and dispersion control can break the limit of arbitrary pulse generator bandwidth to the minimum width of shaping pulse output and adjust it flexibly. When the number of modulation time is 30, 25 times and 20 times, less than 21ps, 26ps , 50ps pulse width is output respectively; 2) The chirp seed source output with time shaping ability is obtained by using time shaping technique and multi-pass phase modulation. By using the corresponding of time and frequency, the flexible compensation of the gain narrowing when broadband pulse transferring in the solid amplification process is realized. 3) The multi-pass phase modulation structure and the high-frequency microwave source are used to modulate the 5ns square-wave pulse, and the spectral width is raised from 3.5nm to 7.7nm after 5 modulation, which effectively improves the spectral broadening ability of the system.
学科主题光学工程
内容类型学位论文
源URL[http://ir.siom.ac.cn/handle/181231/31015]  
专题中国科学院上海光学精密机械研究所
作者单位中国科学院上海光学精密机械研究所
推荐引用方式
GB/T 7714
李玉荣. 基于多程位相调制的新型光谱控制技术研究[D].
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace