CORC  > 软件研究所  > 软件所图书馆  > 会议论文
deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting
Xie Xiang ; Xue Rui ; Zhang Rui
2012
会议名称8th International Conference on Security and Cryptography for Networks, SCN 2012
会议日期September 5, 2012 - September 7, 2012
会议地点Amalfi, Italy
关键词Crystal lattices Quantum theory Security of data
页码1-18
中文摘要Deterministic public key encryption (D-PKE) provides an alternative to randomized public key encryption in various scenarios (e.g. search on encrypted data) where the latter exhibits inherent drawbacks. In CRYPTO'11, Brakerski and Segev formalized a framework for studying the security of deterministic public key encryption schemes with respect to auxiliary inputs. A trivial requirement is that the plaintext should not be efficiently recoverable from the auxiliary inputs. In this paper, we present an efficient deterministic public key encryption scheme in the auxiliary-input setting from lattices. The public key size, ciphertext size and ciphertext expansion factor are improved compared with the scheme proposed by Brakerski and Segev. Our scheme is also secure even in the multi-user setting where related messages may be encrypted under multiple public keys. In addition, the security of our scheme is based on the hardness of the learning with errors (LWE) problem which remains hard even for quantum algorithms. Furthermore, we consider deterministic identity-based public key encryption (D-IBE) in the auxiliary-input setting. The only known D-IBE scheme (without considering auxiliary inputs) in the standard model was proposed by Bellare et al. in EUROCRYPT'12. However, this scheme is only secure in the selective security setting, and Bellare et al. identified it as an open problem to construct adaptively secure D-IBE schemes. The second contribution of this work is to propose a D-IBE scheme from lattices that is adaptively secure. © 2012 Springer-Verlag.
英文摘要Deterministic public key encryption (D-PKE) provides an alternative to randomized public key encryption in various scenarios (e.g. search on encrypted data) where the latter exhibits inherent drawbacks. In CRYPTO'11, Brakerski and Segev formalized a framework for studying the security of deterministic public key encryption schemes with respect to auxiliary inputs. A trivial requirement is that the plaintext should not be efficiently recoverable from the auxiliary inputs. In this paper, we present an efficient deterministic public key encryption scheme in the auxiliary-input setting from lattices. The public key size, ciphertext size and ciphertext expansion factor are improved compared with the scheme proposed by Brakerski and Segev. Our scheme is also secure even in the multi-user setting where related messages may be encrypted under multiple public keys. In addition, the security of our scheme is based on the hardness of the learning with errors (LWE) problem which remains hard even for quantum algorithms. Furthermore, we consider deterministic identity-based public key encryption (D-IBE) in the auxiliary-input setting. The only known D-IBE scheme (without considering auxiliary inputs) in the standard model was proposed by Bellare et al. in EUROCRYPT'12. However, this scheme is only secure in the selective security setting, and Bellare et al. identified it as an open problem to construct adaptively secure D-IBE schemes. The second contribution of this work is to propose a D-IBE scheme from lattices that is adaptively secure. © 2012 Springer-Verlag.
收录类别EI
会议录Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
语种英语
ISSN号0302-9743
ISBN号9783642329272
内容类型会议论文
源URL[http://ir.iscas.ac.cn/handle/311060/15793]  
专题软件研究所_软件所图书馆_会议论文
推荐引用方式
GB/T 7714
Xie Xiang,Xue Rui,Zhang Rui. deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting[C]. 见:8th International Conference on Security and Cryptography for Networks, SCN 2012. Amalfi, Italy. September 5, 2012 - September 7, 2012.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace