Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries
Li, Xiangyan1; Liu, Wei1; Xu, Yichun1; Liu, C. S.1; Pan, B. C.2,3; Liang, Yunfeng1,4; Fang, Q. F.1; Chen, Jun-Ling5; Luo, G. -N.5; Lu, Guang-Hong6
刊名ACTA MATERIALIA
2016-05-01
卷号109期号:页码:115-127
关键词Nano-crystalline Self-healing Grain Boundary Radiation Point Defects
DOI10.1016/j.actamat.2016.02.028
文献子类Article
英文摘要Finding novel nuclear materials with high radiation resistance is very important for the nuclear industry and requires the understanding of the self-healing of radiation damage in such novel materials as nano crystalline iron. Combining molecular dynamics simulations, molecular statics calculations and the object kinetic Monte Carlo method, we found that the self-healing capability of nano-crystalline iron is closely related to the coupling of the individual fundamental segregation and annihilation processes of vacancies and interstitials near the grain boundary (GB). Statically, both near the GB and at the GB, a low-energy-barrier/barrier-free region forms around the interstitial which promotes the annihilation of vacancies. The annihilation process was found to always involve the collective motion of multiple atoms due to the recovery of the strained atoms around the interstitial. Dynamically, the annihilation involves two coupled processes. Before segregating into the GB, the interstitial annihilates lots of vacancies near the GB as it diffuses near the GB together with the low-barrier region. In addition, although the interstitial is tightly bound to the GB after segregation, it efficiently removes the vacancies near the GB while moving along the GB, with the low-barrier region extending into the neighborhood of the GB and even into the grain interior. These two mechanisms were found to work at low temperatures, even temperatures where the vacancy was immobile. This study revealed the interaction of the major radiation defects at different scales and thereby uncovered the origin of the high radiation resistance of nano crystalline iron. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
WOS关键词MECHANICAL-PROPERTIES ; MOLECULAR-DYNAMICS ; VOID FORMATION ; DAMAGE ; IRRADIATION ; DEFECTS ; FE ; SIMULATION ; TOLERANCE ; CLUSTERS
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000374617600012
资助机构National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; National Magnetic Confinement Fusion Program(2015GB112001) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; Chinese Academy of Sciences(XDA03010303) ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; National Natural Science Foundation of China(11505215 ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Scientific Research Grant of Hefei Science Center of CAS Research Program(2015SRG-HSC012) ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; Center for Computation Science, Hefei Institutes of Physical Sciences ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; International Atomic Energy Agency ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11375231 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 11475214 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 51571187 ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191) ; 11275191)
内容类型期刊论文
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/22395]  
专题合肥物质科学研究院_中科院固体物理研究所
作者单位1.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, POB 1129, Hefei 230031, Peoples R China
2.Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
3.Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
4.Kyoto Univ, Environm & Resource Syst Engn, Kyoto 6158540, Japan
5.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
6.Beihang Univ, Dept Phys, Beijing 100191, Peoples R China
7.Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Li, Xiangyan,Liu, Wei,Xu, Yichun,et al. Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries[J]. ACTA MATERIALIA,2016,109(无):115-127.
APA Li, Xiangyan.,Liu, Wei.,Xu, Yichun.,Liu, C. S..,Pan, B. C..,...&Wang, Zhiguang.(2016).Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries.ACTA MATERIALIA,109(无),115-127.
MLA Li, Xiangyan,et al."Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries".ACTA MATERIALIA 109.无(2016):115-127.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace