Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries
Xie, Songhai3; Si, Rui4; Yang, Fan1; Miao, Shu1; Guo, Xiaoguang1; Bao, Xinhe1; Wang, Guoxiong1; Wu, Haihua1,2; Li, Haobo1,2; Zhao, Xinfei1,2
刊名Energy & Environmental Science
2016
卷号9期号:12页码:3736-3745
英文摘要A coordinatively unsaturated copper-nitrogen architecture in copper metalloenzymes is essential for its capability to catalyze the oxygen reduction reaction (ORR). However, the stabilization of analogous active sites in realistic catalysts remains a key challenge. Herein, we report a facile route to synthesize highly doped and exposed copper(I)-nitrogen (Cu(I)-N) active sites within graphene (Cu-N(C)C) by pyrolysis of coordinatively saturated copper phthalocyanine, which is inert for the ORR, together with dicyandiamide. Cu(I)-N is identified as the active site for catalyzing the ORR by combining physicochemical and electro-chemical studies, as well as density function theory calculations. The graphene matrix could stabilize the high density of Cu(I)-N active sites with a copper loading higher than 8.5 wt%, while acting as the electron-conducting path. The ORR activity increases with the specific surface area of the Cu-N(C)C catalysts due to more exposed Cu(I)-N active sites. The optimum Cu-N(C)C catalyst demonstrates a high ORR activity and stability, as well as an excellent performance and stability in zinc-air batteries with ultralow catalyst loading.
WOS标题词Science & Technology ; Physical Sciences ; Technology ; Life Sciences & Biomedicine
类目[WOS]Chemistry, Multidisciplinary ; Energy & Fuels ; Engineering, Chemical ; Environmental Sciences
研究领域[WOS]Chemistry ; Energy & Fuels ; Engineering ; Environmental Sciences & Ecology
关键词[WOS]ATOMICALLY DISPERSED PALLADIUM ; COPPER-DIOXYGEN COMPLEXES ; CYTOCHROME-C-OXIDASE ; ALKALINE MEDIA ; CATHODE CATALYST ; MANGANESE OXIDES ; WATER OXIDATION ; CARBON-BLACK ; FUEL-CELLS ; NITROGEN
收录类别SCI
语种英语
WOS记录号WOS:000392915500014
内容类型期刊论文
源URL[http://cas-ir.dicp.ac.cn/handle/321008/151888]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
作者单位1.Chinese Acad Sci, Dalian Inst Chem Phys, CAS Ctr Excellence Nanosci, Dalian Natl Lab Clean Energy,State Key Lab Cataly, Dalian 116023, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100039, Peoples R China
3.Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Dept Chem, Shanghai 200433, Peoples R China
4.Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Xie, Songhai,Si, Rui,Yang, Fan,et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries[J]. Energy & Environmental Science,2016,9(12):3736-3745.
APA Xie, Songhai.,Si, Rui.,Yang, Fan.,Miao, Shu.,Guo, Xiaoguang.,...&Xiao, Jianping.(2016).Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries.Energy & Environmental Science,9(12),3736-3745.
MLA Xie, Songhai,et al."Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries".Energy & Environmental Science 9.12(2016):3736-3745.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace