题名管道噪声控制与亥姆霍兹共振器问题研究
作者周城光
学位类别博士
答辩日期2007-07-24
授予单位中国科学院声学研究所
授予地点声学研究所
关键词管道 噪声控制 亥姆霍兹共振器 弹性 非线性声学
其他题名Research on Noise Control in Pipes and Some Problems in Helmholtz Resonators
学位专业声学
中文摘要管道系统在船舶、水利、化工、航空航天等领域有着非常广泛的应用背景。管道中的噪声传播和噪声控制是非常重要的研究内容。由于管道中风扇或泵机的往复或旋转运动,其中的噪声具有低频强线谱特性。亥姆霍兹共振器的声学特性非常适合消除噪声中的低频线谱。当介质为空气时,亥姆霍兹共振器的研究通常是基于刚性壁假设;而当介质为水时,需要考虑共振器壁面弹性的影响。目前,尚未有完整的弹性壁亥姆霍兹共振器理论模型,也未见相关充液管道上亥姆霍兹共振消声器的声场流体结构耦合有限元分析。亥姆霍兹共振器的另一种形式,穿孔板共振结构,在线性小振幅范围内的研究已经相当深入,在非线性高入射声压范围内仍待完善。 针对以上问题,本论文的主要研究工作和创新点概括如下: (1)研究了充液管道中波传播的色散特性,针对充液管道中的流体波,分析了管道壁面弹性对其传播速度的影响,基于双传感器法提出在较短管道和较低频率范围内测量声波数的三传感器方法,分别在空气管道和充水管道中进行了实验验证。 (2)建立了考虑壁面弹性的球形腔和圆柱形腔亥姆霍兹共振器的理论模型,建立了弹性腔壁亥姆霍兹共振器三维声场结构耦合的有限元模型,并通过静水管道进行了实验验证。分别讨论了壁面弹性对共振器共振频率、激励声压与腔内声压的传递函数以及共振器的传递损失的影响。有限元模型结果与数值模型结果得到了相互印证。实验结果与理论模型结果和有限元模型结果相一致,腔壁弹性使得充水亥姆霍兹共振器的共振频率大大降低,即降低了共振器传递损失的峰值频率。同时,壁面弹性使得共振器传递损失的带宽有所减小,幅度有所增大。 (3)研究了双层穿孔板吸声结构在高声强宽带噪声激励下的非线性声学特性。在阻抗管中,从100Hz到2000Hz的频率范围内对其进行了实验,参考声压的范围是80dB到150dB。得出了在两层结构声阻抗相耦合的情况下,从线性范围到非线性范围,该吸声结构的声阻抗和吸声系数随声压级的变化特性。
英文摘要Pipe systems are widely used in the fields of ship engineering, water conservancy engineering, chemical industry, aeronautics and astronautics etc. It is very important to investigate noise propagation and noise control in pipes. Low frequency line spectrum noise is often generated due to the reciprocating or circular motion of the fan or pump in pipe systems. Helmholtz resonator has been proved to be an effective means for attenuating such kind of noise. When the medium is air, the cavity walls of Helmholtz resonator are usually looked as rigid. While the medium is liquid such as water, elastic cavity walls should be taken into account. There has not been a proper theoretical model for Helmholtz resonator with elastic cavity walls yet, neither a finite element analysis method for acoustically fluid-structure coupled resonator. As a type of Helmholtz resonator, an absorptive structure with perforated panel has been well investigated in the linear range, but the nonlinear behavior is still a problem. The main originality and contributions of this research work can be summarized as follows. (1) The dispersion characteristics of fluid-filled pipes are investigated. The effect of elastic pipe-wall on sound speed in pipes is analyzed. Based on the two-transducer method, a three-transducer method is presented to measure the sound wave number in short pipes and low frequency range. Experiments have been conducted in air-filled and water-filled pipes to validate the theoretical analysis. (2) Theoretical models of Helmholtz resonators with spherical cavity and cylindrical cavity are developed to examine the effects of elastic cavity walls. A three-dimensional acoustical fluid-structure coupling finite element model is developed to validate the theoretical model. Experiments are also carried out on Helmholtz resonators to verify the theoretical and numerical predictions. Theoretical, numerical and experimental results all show that, the elasticity of cavity walls significantly affect the acoustic performance of Helmholtz resonator. Compared with the rigid-wall resonators, the transmission loss band of an elastic-wall resonator is broadened while the maximum absorption is reduced. (3) Nonlinear acoustic characteristics of an absorptive structure with double-layer perforated panels are investigated under broadband noise excitation. Acoustic impedance of the resonator mounted on an impedance tube is measured in the frequency range of 100-2000Hz, and the sound pressure level range of 80-150dB. Sound impedance and absorption coefficient of the structure are obtained at different sound pressure levels, from linear range to nonlinear range.
语种中文
公开日期2011-05-07
页码125
内容类型学位论文
源URL[http://159.226.59.140/handle/311008/26]  
专题声学研究所_声学所博硕士学位论文_1981-2009博硕士学位论文
推荐引用方式
GB/T 7714
周城光. 管道噪声控制与亥姆霍兹共振器问题研究[D]. 声学研究所. 中国科学院声学研究所. 2007.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace