CORC  > 厦门大学  > 化学化工-已发表论文
Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)(2)F-3
Liu, Zigeng ; Hu, Yan-Yan ; Dunstan, Matthew T. ; Huo, Hua ; Hao, Xiaogang ; Zou, Huan ; Zhong, Guiming ; Yang, Yong ; Grey, Clare P. ; Yang Y(杨勇)
刊名http://dx.doi.org/10.1021/cm403728w
2014-04-22
关键词ELECTROCHEMICAL INSERTION PROPERTIES SODIUM-ION VANADIUM FLUOROPHOSPHATE CATHODE PARAMETERS STABILITY VOLTAGE
英文摘要EU ERC Advanced Fellowship; State Scholarship Fund from China Scholarship Council [2011631036]; Newton International Fellowship from the Royal Society; Marie Curie International Incoming Fellowship [PIIF-GA-2011_299341]; Cambridge Commonwealth Trusts and Trinity College, Cambridge; National Basic Research Program of China (973 program) [2011CB935903]; National Natural Science Foundation of China [21233004]; Na3V2(PO4)(2)F-3 is a novel electrode material that can be used in both Li ion and Na ion batteries (LIBs and NIBs). The long- and short-range structural changes and ionic and electronic mobility of Na3V2(PO4)(2)F-3 as a positive electrode in a NIB have been investigated with electrochemical analysis, X-ray diffraction (XRD), and high-resolution Na-23 and P-31 solid-state nuclear magnetic resonance (NMR). The Na-23 NMR spectra and XRD refinements show that the Na ions are removed non-selectively from the two distinct Na sites, the fully occupied Na1 site and the partially occupied Na2 site, at least at the beginning of charge. Anisotropic changes in lattice parameters of the cycled Na3V2(PO4)(2)F-3 electrode upon charge have been observed, where a (= b) continues to increase and c decreases, indicative of solid-solution processes. A noticeable decrease in the cell volume between 0.6 Na and 1 Na is observed along with a discontinuity in the Na-23 hyperfine shift between 0.9 and 1.0 Na extraction, which we suggest is due to a rearrangement of unpaired electrons within the vanadium t(28) orbitals. The Na ion mobility increases steadily on charging as more Na vacancies are formed, and coalescence of the resonances from the two Na sites is observed when 0.9 Na is removed, indicating a Na1-Na2 hopping (two-site exchange) rate of >= 4.6 kHz. This rapid Na motion must in part be responsible for the good rate performance of this electrode material. The P-31 NMR spectra are complex, the shifts of the two crystallograpically distinct sites being sensitive to both local Na cation ordering on the Na2 site in the as-synthesized material, the presence of oxidized (V4+) defects in the structure, and the changes of cation and electronic mobility on Na extraction. This study shows how NMR spectroscopy complemented by XRD can be used to provide insight into the mechanism of Na extraction from Na3V2(PO4)(2)F-3 when used in a NIB.
语种英语
出版者AMER CHEMICAL SOC
内容类型期刊论文
源URL[http://dspace.xmu.edu.cn/handle/2288/89320]  
专题化学化工-已发表论文
推荐引用方式
GB/T 7714
Liu, Zigeng,Hu, Yan-Yan,Dunstan, Matthew T.,et al. Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)(2)F-3[J]. http://dx.doi.org/10.1021/cm403728w,2014.
APA Liu, Zigeng.,Hu, Yan-Yan.,Dunstan, Matthew T..,Huo, Hua.,Hao, Xiaogang.,...&杨勇.(2014).Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)(2)F-3.http://dx.doi.org/10.1021/cm403728w.
MLA Liu, Zigeng,et al."Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)(2)F-3".http://dx.doi.org/10.1021/cm403728w (2014).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace