CORC  > 厦门大学  > 化学化工-已发表论文
Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction
Xie, Shuifen ; Choi, Sang-Il ; Lu, Ning ; Roling, Luke T. ; Herron, Jeffrey A. ; Zhang, Lei ; Park, Jinho ; Wang, Jinguo ; Kim, Moon J. ; Xie, Zhaoxiong ; Mavrikakis, Manos ; Xia, Younan ; Xie ZX(谢兆雄)
刊名http://dx.doi.org/10.1021/nl501205j
2014
关键词PLATINUM NANOCRYSTALS METAL NANOCRYSTALS MONOLAYER SURFACES STRAIN GROWTH ALLOY OXIDATION TRENDS FILMS
英文摘要Georgia Institute of Technology; DOE (BES, Office of Chemical Sciences) [DE-FG02-05ER15731]; China Scholarship Council; DOE Office of Biological and Environmental Research at PNNL; CNM at ANL; DOE [DE-AC02-06CH11357, DE-AC02-05CH11231]; NERSC; An effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the deposited Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt-nL (n = 1-6) core-shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt2-3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt-1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.
语种英语
出版者AMER CHEMICAL SOC
内容类型期刊论文
源URL[http://dspace.xmu.edu.cn/handle/2288/89282]  
专题化学化工-已发表论文
推荐引用方式
GB/T 7714
Xie, Shuifen,Choi, Sang-Il,Lu, Ning,et al. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction[J]. http://dx.doi.org/10.1021/nl501205j,2014.
APA Xie, Shuifen.,Choi, Sang-Il.,Lu, Ning.,Roling, Luke T..,Herron, Jeffrey A..,...&谢兆雄.(2014).Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction.http://dx.doi.org/10.1021/nl501205j.
MLA Xie, Shuifen,et al."Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction".http://dx.doi.org/10.1021/nl501205j (2014).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace