题名混合驱动水下滑翔机系统效率与运动建模问题研究
作者陈质二
学位类别博士
答辩日期2016-05-26
授予单位中国科学院沈阳自动化研究所
导师张艾群 ; 俞建成
关键词水下滑翔机 混合驱动水下滑翔机 航行效率 可折叠螺旋桨 水动力
其他题名Research on System Efficiency and Motion Modeling Problems for Hybrid-Driven Underwater Gliders
学位专业机械电子工程
中文摘要本文结合国家自然科学基金课题“混合驱动水下滑翔机实现机理与控制问题研究(编号:51179183)”的课题需求,针对混合驱动水下滑翔机系统效率与运动建模的若干关键问题进行了深入系统的研究,主要研究内容包括混合驱动水下滑翔机实现机理与航行效率研究、混合驱动水下滑翔机专用可折叠螺旋桨驱动装置研究与实现、混合驱动水下滑翔机运动与建模问题研究以及混合驱动水下滑翔机实验平台开发与实验研究,详细内容如下:1、实现机理与航行效率研究。以第一性原理分析方法为理论基础,分别从受力分析角度和能量做功角度建立了混合驱动水下滑翔机垂直面内稳态运动下的AUV模式、Glider模式以及混合模式的理想航行效率模型和实际航行效率模型。分别从理想航行效率和实际航行效率两方面分别阐述了影响混合驱动水下滑翔机航行效率的因素。影响理想航行因素包括桨体比、翼体比以及滑翔角、俯仰角等,从理论上给出了提高不同航行模式下航行效率的办法;影响实际航行效率的因素包括航行速度、深度、滑翔角、螺旋桨转速以及负载功耗等,并定量分析了影响程度,分析的结论对实际作业中航行模式的选择具有指导意义。2、可折叠螺旋桨驱动装置数学建模与水动力性能分析。基于图谱法,本文开发了一种适用于混合驱动水下滑翔机的可折叠螺旋桨驱动装置,建立了可折叠螺旋桨的力平衡和力矩平衡模型,并采用CFD方法计算了可折叠螺旋桨在不同桨叶展开角时的敞水性能,获得了桨叶完全展开时不同进速系数时推进器的推力系数、转矩系数以及敞水效率,并获得了不同桨叶展开角时的水动力推力矩和水动力阻力矩,通过建立复位弹簧刚度模型,确定了可折叠推进装置的有效刚度范围、螺旋桨最低转速以及预设桨叶展开角,最后通过水池实验验证了可折叠螺旋桨驱动装置的功能。3、空间六自由度运动与建模。运用拉格朗日方程推导了混合驱动水下滑翔机三维空间六自由度动力学模型,本文所建动力学模型与传统水下滑翔机的动力学模型有一定的相似性,但是水动力对系统的作用机理不同;相对于其它类型的混合滑翔机,不同之处在于不同工况下可折叠螺旋桨水动力学模型不同。本文还通过CFD计算的方法和近似计算方法获取了混合驱动水下滑翔机的水动力系数。最后对混合驱动水下滑翔机动力学方程采用三阶龙格库塔方法进行了数值求解,在Matlab软件环境中实现了对混合驱动水下滑翔机不同航行模式三维空间运动的数值仿真。4、实验平台开发与实验分析。从混合驱动水下滑翔机的实现机理与功能特征出发,针对混合驱动水下滑翔机系统建模与仿真实验的结果,进行了混合驱动水下滑翔机的实验平台设计,重点针对AUV模式螺旋桨驱动舱段进行了详细设计。根据混合驱动水下滑翔机要达到三种航行模式能力需求,研制了一种将浮力驱动和螺旋桨驱动集于一体的混合驱动水下滑翔机实验平台,并将可折叠螺旋桨驱动装置置于系统的艉部舱段,通过湖上实验分别测试了混合驱动水下滑翔机在AUV 模式、Glider模式以及混合模式下的空间回转航行性能和定深定向航行性能。
英文摘要This dissertation researchs on the key problems of HDUG’s system efficiency and dynamic model in the light of the needs of the project of Research on mechanism realization and control problems of Hybrid-Driven Underwater Glider of National Natural Science Foundation of China (NNSFC) (No. 51179183). The main contents include transit efficiency, folding propeller dedicated for HDUG, dynamic mathmetical model, the development of the experiment platform of HDUG, and the field trials. The details are summarized as follows: 1. Mechanism realization and transit efficiency Based on the first-principle analysis method, this dissertation establishes the ideal transit efficiency and real transit efficiency from the standpoint of force analysis and energy analysis repectively, including transit on AUV mode, glider mode, and hybrid mode. The influencing factors to the transit efficiency are also discussed in this dissertation. First, the factors effect the ideal transit efficiency including the propeller disk to hull diameter ratio, wingspan to hull diameter ratio, gliding angle, and pitch angle. This dissertation also presents the mehod of improving the ideal transit efficiency in different driven mode. And second, the factors effect the real transit efficiency including velocity, depth, gliding angle, spinning speed of propeller, and the hotel power of the vehicle. The results of this discussion can help human to make choice of the driven mode of HDUG in real oceanography operation. 2. Folding propulsion mechanism mathmetical model and hydrodynamic performance analysis Based on series chart method, a folding propulsion mechanism is developed which are dedicated to hybrid-driven underwater gliders. In addition, the mathematical model of the propulsion mechanism is built and the thrust coefficient, torque coefficient and open water efficiency are obtained through CFD method. The thrust moment and drag moment are also simulated in defferent blade angle status. From the mathematical model, this dissertation also determines the torsion coefficient range, the lowest propeller spinning speed, and the preset blade opening angle of the folding propulsion mechanism. Finally, in-water experiments have been carried out in the indoor testing pool of Shenyang Institute of Automation (SIA) in order to validate the folding propulsion mechanism. 3. Motion and dynamic model in six degrees of freedom (DOF) Lagrange equation method is used to derive the six-DOF dynamic mathmetical model of HDUG in 3D space. The mathmetical model established in this dissertation has similarity as conventional underwater glider. The difference is focus on the hydrodynamic forces acting on the HDUG. The hydrodynamic of the propeller is also defferent for the folding propulsion mechanism compared with conventional fixed-wing propeller in the HDUG mathematical model. This dissertation also obtains the hydrodynamic coefficients by using CFD method and approximate calculation method. Finally, a third order Runge-Kutta method has been used to solve the dynamic equations of the HDUG, and the motion characteristics of the HDUG in 3D space in three driven modes are simulated by using Matlab software package. 4. Experiment platform and the field trials From the mechanism realization and function characteristics, an experiment platform of HDUG is designed for the mathematical model and simulated results validation. The folding propulsion mechanism is developed and installed at the stern of Sea-Wing underwater glider, which is named Sea-Wing H. In Mar. 2016, the research team in SIA tested the transit performance of HDUG in AUV mode, glider mode, and hybrid mode in Qiandao Lake in Zhejiang province, China.
语种中文
产权排序1
页码141页
内容类型学位论文
源URL[http://ir.sia.cn/handle/173321/19646]  
专题沈阳自动化研究所_水下机器人研究室
推荐引用方式
GB/T 7714
陈质二. 混合驱动水下滑翔机系统效率与运动建模问题研究[D]. 中国科学院沈阳自动化研究所. 2016.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace