题名基于光致变形原理的软体微型作业机器人研究
作者黄超雷
学位类别博士
答辩日期2016-05-30
授予单位中国科学院沈阳自动化研究所
导师刘杰 ; 董再励
关键词光致变形材料 微型夹持器 微型游动机器人 微型作业机器人 软体机器人
其他题名Study of Soft Micro-Robot with Operational Capacity Based on Light-induced Deformation Principle
学位专业机械电子工程
中文摘要微型机器人在微尺度环境探索与检测、微尺度组装、生物医疗等方面具有重要的应用价值,从而受到研究者们的广泛重视。到目前为止,研究者已经研制出了一些基于不同驱动原理和方法的微型机器人,然而这些微型机器人通常仍然存在着能源供给困难、应用环境及作业能力受限等问题。因此,探索新型驱动方式下具有作业能力的微型机器人,是当前微型机器人研究领域的重要方向。针对微型机器人科学技术发展的需求,本论文将结合新型智能材料,使用光能远程驱动和控制的方法,来探索研制新型的携带光驱动微型执行器的光驱动软体微型作业机器人,从而实现机器人化定位、游动、夹持、捕获和运输负载等微尺度作业工作。本论文的具体研究内容如下: (1)面向微尺度光驱动和控制的光致变形材料特性研究:为了实现光场远程驱动和控制,研究中以使用光刺激形变响应类材料为主。通过实验分别测量这类材料在紫外光照射下收缩力和侧向偏转力的变化,以确定其光致变形的基本特性。进一步建立该材料在紫外光照射下变形的模型,并以该模型为基础研究光致变形材料分别在静态和动态条件下的输出力与紫外光照射参数(照射时间和照射强度)之间的关系,为使用光致变形材料进行驱动和控制奠定基础。 (2)光驱动和控制的微型夹持器研究:以光致变形材料的基本特性研究为基础,设计和制造一个可以用于微操作的单指可动微型夹持器。根据该光驱动微型夹持器的特点,设计合适的驱动光路,结合其他辅助设施组建光驱动的微操作系统。通过实验验证该微型夹持器和微操作系统工作的有效性。分析光驱动微型夹持器夹持物体时的受力大小,进一步建立数学模型,预估微型夹持器的操作能力并优化微型夹持器设计。研究光驱动微型夹持器设计、制造和使用的基本特性,为光驱动软体微型作业机器人研究奠定基础。 (3)光驱动的微型游动机器人研究:在光致变形材料特性研究结果的基础上,结合低雷诺数游动特点,设计和制造可以使用光驱动的微型游动机器人。进一步结合光驱动微型游动机器人的结构特点,设计适当的驱动和控制光路并搭建微型游动机器人的光驱动系统。在光驱动系统的基础上,通过实验验证光驱动微型机器人的游动能力,并对游动实验结果进行分析,得出光驱动微型游动机器人的游动特性。最后分析光驱动游动机器人游动过程中的受力特点,建立驱动力的数学模型,并研究驱动光的参数对游动机器人游动的影响,优化光驱动游动机器人机构和驱动方案设计。 (4)光驱动软体微型作业机器人研究:在微型夹持器的研究基础上,设计和制造一种能够与微型游动机器人兼容的柔性微型夹持器。进而结合微型游动机器人的研究结果,将柔性微型夹持器与微型游动机器人相结合,设计和制造一种光驱动软体微型作业机器人,该微型机器人能够在完成游动运动的同时也可以完成操作物体的作业工作,以实现通过微型作业机器人实现夹持和运输负载的目的。根据光驱动软体微型作业机器人的驱动特点,在微型游动机器人的光驱动系统的基础上,设计和搭建微型作业机器人的光驱动系统,以实现对微型作业机器人游动和操作物体的驱动及控制。进一步通过实验验证光驱动微型作业机器人在光场的驱动和控制下游动、夹持和运输负载的能力。最后分析实验中微型夹持器夹取物体时的受力特点,确定其工作能力,进而分析微型作业机器人操作物体前后的游动特性,以阐明游动过程中的速度及方向变化。 本论文的研究工作探索研究了新型的光驱动微型夹持器及光驱动软体微型游动机器人,以及在此基础上的光驱动软体微型作业机器人,分别实现了光驱动的微尺度操作、光驱动的微型机器人游动、光驱动微型作业机器人的操作作业。在研究过程中,使用光致变形材料驱动微型机构和机器人,实现了微型机器人的驱动和控制,进而结合光驱动微型夹持器,研制出了具有机器人化定位、游动、夹持、捕获和运输负载等作业能力的微型作业机器人。此类新型微型执行器和微型作业机器人的研制成功,将会对相关领域微操作、微型机器人的科技进展产生积极的推动作用。
英文摘要Micro-robots have great applications values in microscale environment exploration and detection, micro-scale assembly, bio-medical and other applications, so researchers have paid extensive attention to the micro-robots. Now some micro-robots are developed with different drive principles and methods by scientists, while they generally still have troubles in energy supply, limited application enbironments and operational capacity and so on. Therefore to explore new drive method for the micro-robot with operational capacity is an important research direction of micro-robots. For developing requirements of micro-robots, this paper will combine a new smart material and use remotely light-driven and light-controlled method to explore and research new light-driven soft micro-robot with operational capacity by a light-driven micro-gripper. Finally we will realize micro-scale robotic location, swimming, clamping, capturing and transporting loads works by the light-driven soft micro-robot with operational capacity. Concrete research work in this paper is summarized as follows: (1) Light stimulus responsive smart material research for light driving and controlling: In this research work, the light stimulus responsive smart material is used to realize ligh remote driving and controlling. Through experiments, contractile force and lateral deflection force of the material are measured when the material is irradiated by UV light to determine the light-induced deformation property of the light stimulus responsive smart material. Farthermore, mathematical model of the material is established when it is irradiated by UV light. Then the relationshipes between the material output forces and UV irradiation parameters (irradiation time and irradiation intensity) respectively static and dynamic conditions are also studied with the mathematical model. Those works lay the foundation for appltion of light-induced deformation material in remote driving and controlling. (2) micro-grippers research based on light driving and controlling: A single finger movable micro-gripper for micro-scale manipulation is designed and fabricated based on research results of light-induced deformation material property. According to structure of the micro-gripper, appropriate light path to drive is designed, and then a light-driven micro-manipalation system is setted up with other auxiliary equipments. Effectiveness of the micro-gripper and the micro-manipulation system will be verified by experiments. Then we will analysis the forces of the micro-gripper when it grabs an object and set up mathematical model for the micro-gripper. According to the mathematical model, we will estimate the manipulation ability of the micro-gripper and optimize the design of micro-gripper. The research results of the light-driven micro-gripper will lay the foundation for the light-driven micro-manipulaiton robot. (3) Light-driven swimming micro-robots research: A light-driven swimming micro-robot is designed and fabricated based on research results of light-induced deformation material property and swimming mechanism under low Reynolds number situation. Futhermore, the light-driven system for the micro-robot is setted up based on structural features and appropriate driving light pathes of micro-robot. Effectiveness of the micro-robot and the light-driven system will be verified by experiments. Then we will analysis the experimental results and forces of the micro-robot when it is swimming and set up mathematical model for the micro-robot. According to the mathematical model, we will study effect of driving light irradiation parameters to the micro-robot and optimize the design of micro-robot and driving scheme. (4) Research of light-driven soft micro-robot with operational capacity: A light-driven flexible micro-gripper is designed and fabricated based on research results of light-driven micro-gripper. Futhermore, the light-driven swimming light-driven micro-robot is combined to fabricate a light-driven soft micro-robot with operational capacity for aims of grabbing and transporting loads when it is swimming. The light-driven system for the soft micro-robot with operational capacity is also setted up based on former light-driven system for the swimming micro-robot to realize the micro-robot swims and grabs loads. Effectiveness of the micro-robot capability for swimming, grabbing and transporting under light driving and controlling will also be verified by experiments. Finally forces characteristics of the flexible micro-gripper are analysised to determine its work ability, and furthermore swimming characteristics of the micro-robot before and after grabing the load also have been analysised to illustrate speed and direction changes of swimming processes. This paper explores new light-driven micro-actuators, light-driven soft swimming micro-robot and light-driven soft micro-robot with operational capacity and respectively realizes precise manipulation in micro-scale, micro-robots swimming driven and controlled by lights, manipulation works by light-driven soft micro-robot with operational capacity. During the research, we use the light-induced deformation material to drive the micro-machine and micro-robot to solve the problem of energy supply and control information transfer, and then we fabricate a light-driven soft micro-robot with robotic location, swimming, clamping, capturing and transporting loads capacities. Those micro-actuators and micro-robots promote the development of science and technology in fields of micro-manipulation and micro-robot.
语种中文
产权排序1
页码117页
内容类型学位论文
源URL[http://ir.sia.cn/handle/173321/19674]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
黄超雷. 基于光致变形原理的软体微型作业机器人研究[D]. 中国科学院沈阳自动化研究所. 2016.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace