BiOI/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation
Xiang, Zhenbo1,2; Wang, Yi1; Zhang, Dun1; Ju, Peng3
刊名JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY
2016-08-25
卷号40页码:83-92
关键词BiOI BiVO4 Photocatalysis Antifouling Visible light
英文摘要A novel visible-light-sensitive BiOI/BiVO4 photocatalyst with a p-n heterojunction structure was synthesized through a facile coprecipitation method. The physical and chemical properties of as synthesized BiOI/BiVO4 composites were characterized by XRD, XPS, BET, SEM, EDS, HRTEM, photoluminescence spectrum and UV-DRS respectively. The photocatalytic activity of the prepared photocatalysts was evaluated by photodegrading methylene blue and killing of Pseudomonas aeruginosa (P. aeruginosa) under visible light irradiation. The results showed that the 30%BiOI/BiVO4 (molar ratio of I:V = 3:7) exhibits the higher photocatalytic activity than the pristine BiOI and BiVO4. Moreover, the sterilization mechanism involved in the photocatalytic disinfection process was studied by captive species trapping experiments. The result revealed that hydroxyl radical ((OH)-O-center dot) and holes (h(+)) are the main reactive species for killing of P. aeruginosa under visible light irradiation. In addition, after five recycles for killing of P. aeruginosa under visible light irradiation, 30%BiOI/BiVO4 does not exhibit significant loss of photocatalytic activity. The results confirm that the synthesized 30%BiOI/BiVO4 photocatalyst has long-time reusability and good photocatalytic stability. The photocatalyst shows potential application in marine antifouling. (C) 2016 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
收录类别SCI
语种英语
WOS记录号WOS:000381834800011
内容类型期刊论文
版本出版稿
源URL[http://ir.qdio.ac.cn/handle/337002/135726]  
专题海洋研究所_海洋腐蚀与防护研究发展中心
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, 7 Nanhai Rd, Qingdao 266071, Peoples R China
2.Univ Chinese Acad Sci, 19 Jia Yuquan Rd, Beijing 100039, Peoples R China
3.Chinese Acad Sci, Lanzhou Inst Chem Phys, Lab Clean Energy Chem & Mat, 18 Tianshui Middle Rd, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Xiang, Zhenbo,Wang, Yi,Zhang, Dun,et al. BiOI/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation[J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY,2016,40:83-92.
APA Xiang, Zhenbo,Wang, Yi,Zhang, Dun,&Ju, Peng.(2016).BiOI/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation.JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY,40,83-92.
MLA Xiang, Zhenbo,et al."BiOI/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation".JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY 40(2016):83-92.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace