CORC  > 电工研究所  > 其他部门  > 博士学位论文
题名铁电材料制备及其微型致冷研究; 铁电材料制备及其微型致冷研究
作者1刘少波,电工研究所
学位类别博士后
答辩日期2005
授予单位中国科学院电工研究所电气工程
导师1李艳秋,电工研究所
关键词铁电体工质材料 弛豫性PMNT 微致冷器 微机电系统(MEMS) ferroelectric cryogenic working materials relaxing ferroelectrics PMNT micro electro mechanical system (MEMS) microcooler
其他题名铁电材料制备及其微型致冷研究
中文摘要在微机电系统(MEMS)进一步向微型化、集成化和多功能化的发展过程中,与CPU芯片和一般半导体集成块类似,IC高度集成的MEMS和相应器件必须解决散热(致冷)问题,才能使系统和器件性能稳定、可靠地工作。因此,为适应现代日益高能量密度的微型发热器件和系统,致冷器本身也必须微型化、并且具有IC兼容性和普适性、易于集成、便于数字控制、灵敏、高效和低成本,这对MEMS的发展和最终实用化具有重要的现实意义。因此,基于微机械加工工艺的铁电体微型致冷器被提出加以研究,并有望发展成为无压缩机、无机械部件和易操作的新型MEMS致冷器。铁电体微型MEMS致冷器的制备技术涉及微电子与固体电子、材料物理及微系统等多个领域和交叉学科,其成功研制将成为常温致冷技术领域内的一项创新性成就。受国家,"863"计划资助,本课题着手研究铁电体微型致冷器,是利用了铁电材料体系的反热释电效应,即电生热(EC)效应。归根结底,是一种基于铁电体熵变和相变致冷机理的新型结构MEMS致冷器,这种微型冷却系统可广泛应用于小尺寸-及具有一般热耗散功率的器件与系统的致冷,如微电子器件、仪器仪表、医疗器械中的微小型低温或恒温器中使用,尤其在大规模集成电路(uLSI)如CPU、光敏器件、功率器件、高频晶体管、MEMs和微光机电系统(MOEMs)等元件和设备的冷却中应用。本文重点介绍了弛豫性Pb(Mg_(1/3)Nb_(2/3))O_3与PbTiO_3固溶体(PMNT)铁电薄厚膜及陶瓷工质材料的制备、致冷器系统结构设计(致冷器阵列结构、版图设计与制作技犬)以及致冷效应表征技术等,并对铁电致冷进行了机理性探讨与展望。 With the rapid development of micro electro mechanical system (MEMS) and information technology, the MEMS equipments such as the micro-sensor and actuator, the portable 1C system such as the notebook PC, the personal stereo and the charge coupled device (CCD), et al increasingly become micromation and multifunctional. For the high energy density of their power supply, they must find ways to keep the equipment cool or prematurely watch them fail. Thus, a new cryogenic refrigerator based on the ferroelectric depolarization electrocaloric effect is to be researched. This refrigerator is so-called ferroelectrics MEMS microcooler (FMM). Compared to the traditional mechanical compressing refrigerator and the semiconductive thermoelectric MEMS microcooler, FMM takes advantages at the excellent IC compatibility, high sensitivity and responsibility. without mechanical compressing, high refrigeration efficiency and low cost, et al. This project was supported by the National Hi-Technology Research and Development Program of China (863 Program).FMM is based on the ferroelectric depolarization electrocaloric (EC) effect, namely the inversion pyroelectric effect of ferroelectrics. In the final analysis, FMM is based on the cryogenic principle derived from entropy transition and phase transition. This microcooler system can be widely applied at the MEMS, IC and IT domains. The fabrication technology of FMM is involved with the crossed subjects such as Microelectrics and solid electrics, Material physics and Microsystems, etc. It will become an innovation achievement in the no-CFC refrigeration technology domains. In the last decade, Russian reported that PbtScjoTai^OsCPSTXPKMgi/sNba^OaCPMN^nd Pb(Sc,/2Nbi/2)O3(PSN) relaxing ferroelectrics have realized the depolarization refrigeration near the ambient temperature. The performance of the single progression FMM is listed as follows, the effective temperature region is 210-31 OK, the energy conversion efficiency is 85%, the linear EC effect ATEc is about 1 - 1.8K. This research established a feasibility foundation for the worldwide research on ferroelectric refrigeration.This thesis is focused on the fabrication of the cryogenic working materials, which are the relaxing ferroelectric Pb(Mgi/3Nb2/3)C>3 and PbTiC>3 solid solution (PMNT) including ceramics and thin/thick films. The design of FMM system structures including the arrays structure, their masks and fabrication technique are also described. Finally, the ferroelectric refrigeration principle is described and prospected.
语种中文
公开日期2010-10-18
页码61
内容类型学位论文
源URL[http://ir.iee.ac.cn/handle/311042/6864]  
专题电工研究所_其他部门_其他部门_博士学位论文
推荐引用方式
GB/T 7714
1刘少波,电工研究所. 铁电材料制备及其微型致冷研究, 铁电材料制备及其微型致冷研究[D]. 中国科学院电工研究所电气工程. 2005.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace