题名基于RTS2的自动DIMM系统的实现
作者彭焕文
学位类别硕士
答辩日期2014-04
授予单位中国科学院研究生院(云南天文台)
授予地点北京
导师白金明
关键词大气视宁度 ADIMM RAO RTS2 自主观测 自动寻星 指向
其他题名ADIMM system implementation based on RTS2
学位专业天文技术与方法
中文摘要天文台站观测环境的长期监测一直是很重要的研究内容,为正常有效地进行天文观测提供了必不可少的技术支持,于是,如何建立完整高效的站址监测系统便成为了研究人员的研究方向之一。天文观测站址监测系统主要包括了大气视宁度监测、气象信息监测、全天云量监视等等[41],这其中的大气视宁度监测是非常重要的一部分,对评估天文观测台站的观测条件好坏起到了非常重要的作用。 大气视宁度一般用大气光学相干长度r0来表述,是现今使用最广泛的体现大气视宁度的参数。测量计算大气光学相干长度r0的方法有很多种,其中最具代表性也应用最广泛的是差分像运动法,该方法通过测量星像相对位置的变化来计算出r0值,能够非常有效地排除掉非大气因素对大气视宁度测量的影响。差分像运动大气视宁度监测仪(Differential Image Motion Monitor,DIMM)就是以此原理来设计研制的,DIMM将单一目标源经过两个子瞳在CCD上成两个星像,通过测量这两个星像相对距离变化的方差来计算大气视宁度参数r0,消除了仪器抖动等非大气因素的影响,使得测量结果更加可靠。 目前世界上DIMM的使用已经较为普遍,其作为天文台站监测和天文选址的工具发挥了重要的作用。由于天文台站一般在较偏远的地区或者高原地区,环境气候比较恶劣,于是由人员值守DIMM进行观测就变得非常艰苦,特别是在南极站点,值守观测更加是不现实的。这样一来,将DIMM实现自动化(ADIMM),让其自主进行观测就成为了非常必要的目标。要实现DIMM自动化,需要借助近年来发展迅速的程控自主天文台技术,并以此技术为支撑平台来进行设备开发。 程控自主天文台(Robotic Autonomous Observatory,RAO)是一套能够执行各种观测任务,并且能够在任务执行过程中没有任何人为协助的情况下自主适应各种环境变化的望远镜系统,其具有自动、无人的特点。程控自主天文台的技术为差分像运动大气视宁度监测仪的自动化奠定了基础,全自动化也是DIMM发展的一个重要趋势。 为了高效地对DIMM设备进行操作控制,采用了一套基于Linux 平台的集成化开源程控自主天文台控制系统,远程望远镜控制系统第二版(Remote Telescope System 2nd,RTS2)进行自动DIMM的研究,具有较强的创新性。RTS2系统就是以全自动为开发目标,具有环境自主监测、观测目标自主选择、自主观测、自主适应环境变化等优点。RTS2系统在设计与实现上具有非常强的模块性,能够很方便地启用与关闭其中的某个模块,设备切换快捷,系统响应非常快速。采用RTS2系统来实现ADIMM,能够充分利用这套先进望远镜系统的优点,高效地对硬件设备进行控制,也能够以此掌握RTS2系统的关键技术,实现自主开发自动远镜控制软件技术上的突破。 基于RTS2的ADIMM系统,根据其程控自主的特点,在硬件配置上需要具备以下三个部分:环境监测部分,包含了气象站、云量传感器以及圆顶;观测设备部分,包含了主望远镜、寻星镜、相应CCD以及子瞳罩;控制部分,包含了控制计算机、RTS2与所有硬件设备的连接配置。在软件控制上需要具备以下五个部分:自动寻星、指向、自动导星、图像处理与视宁度计算。 在以上所示的软硬件包含内容中,环境监测部分中的气象站给RTS2系统提供实时的气象信息,云量传感器给RTS2系统提供实时的云量信息,以这些信息来判断是否打开圆顶开始观测或者关闭圆顶结束观测。观测设备部分中的寻星镜及相应CCD负责辅助望远镜进行精确指向,通过寻星镜CCD先将目标星导至寻星镜视场中央,再通过主望远镜CCD将目标星导至主视场中央,然后主望远镜CCD开始曝光获取DIMM图像。在控制计算机的ubuntu操作系统中安装有RTS2系统,并在RTS2系统中完成了对所有硬件设备的通信连接配置,以便能够使用RTS2对硬件设备进行控制。软件开发部分中的自动寻星功能能够综合一系列因素给所有可观测目标星计算权值,然后选取权值最高的目标星并完成指向,最后开始曝光获取DIMM图像,并执行自动导星,以及图像处理与视宁度计算来获取大气视宁度数据。
英文摘要The long-term monitoring of astronomical observatories is the important research contents for researchers, it provides necessary technical supports for the efficiently astronomical observing. Hence, how to build a highly integrated and efficiency monitoring system of observatories become one direction of researchers’ research topics. The monitoring system of astronomical observatories mainly includes atmospheric seeing monitoring, meteorological information monitoring, cloud monitoring, et.al. The seeing monitoring is a very important part that it performs well to estimate the observation condition of astronomical observatories. Atmospheric seeing is often denoted by atmospheric optic coherence length r0, it is the most widely application nowadays. There are many methods to calculate the r0, and the most representative one is the method of differential image motion. It’s very efficiency that eliminate the influence of none atmospheric factors by the method which calculates the r0 value through measuring the relative position change of stellar dot on CCD image, And Differential Image Motion Monitor – DIMM – is developed hereby. A stellar can have two dots on CCD image after through the two apertures on DIMM telescope, then the r0 value can be calculated by measuring relative distance variance of this two image dots. DIMM eliminates the influence of none atmospheric factors, such as telescope’ shaking, and make the measurement results more credible. It becomes popular that more and more researchers use DIMM to measure r0, and it plays very important effect by acting as a tool of astronomical observatories’ monitoring and astronomical site selection. Most observatories’ environments are very poor because their locations are usually at remote area or plateau. This makes the observation condition very hard that researchers watch over the observation especially at the South Pole. Thus, it becomes very necessary that researchers achieve automation on DIMM (ADIMM) and make it to observe autonomously. The technology of Robotic Autonomous Observatory is necessary for achieve ADIMM. Robotic Autonomous Observatory (RAO) is a telescope system that can execute every observation task, and can adapt changing environment while nobody intervenes. It has the features of automation and unmanned. This technology is laying a good foundation of automation on DIMM, and automation is also a important developing trend of DIMM. In order to control DIMM devices highly effective, we use an integrated and open source RAO control system based on Linux – Remote Telescope System 2nd, RTS2 – to proceed research of ADIMM. RTS2 system’s developing goal also is automation, it has merits of environment monitoring, observation targets’ selection, autonomously observing and environment adapting, et.al. RTS2 has very strong modularity in system designing and can easily start or stop modules, it also can switch devices quickly and its’ system response really fast. Achieving ADIMM by RTS2 can take full advantage of this advanced system’ merits and control hardware highly effective. Also we can get hold of the key technology of RTS2 system in order to achieve the breakthrough on independent autonomous telescope control system development. According to the trait, the hardware configuration of ADIMM system based on RTS2 may have these parts: environment monitoring part including meteorological station, cloud sensor and dome; observing devices part including telescope, finder-scope and CCD cameras; control part including computer, RTS2 and connection of hardware. Also, the software control may have these parts: autonomous target finding, pointing, autonomous guiding, image processing and calculating seeing. Refer to above contents, the meteorological station provides in real time meteorological information to RTS2 system, and the cloud sensor provides in real time cloud information to RTS2 system, in order to decide whether the dome can be
语种中文
学科主题天文学
页码54
内容类型学位论文
源URL[http://ir.ynao.ac.cn/handle/114a53/5571]  
专题云南天文台_丽江天文观测站(南方基地)
推荐引用方式
GB/T 7714
彭焕文. 基于RTS2的自动DIMM系统的实现[D]. 北京. 中国科学院研究生院(云南天文台). 2014.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace