题名基于ZnO微米线发光及紫外探测器件的研制
作者赵斌
学位类别博士
答辩日期2015-05
授予单位中国科学院大学
导师赵东旭
关键词氧化锌微米线 发光器件 forster能量转移 氧化镓 日盲探测器
其他题名The study and fabrication of luminescence and ultraviolet detection device based on ZnO microwries
学位专业凝聚态物理
中文摘要紫外光电器件在绿色照明,光通信和紫外探测等方面有着广泛的应用和巨大的前景。II-VI族半导体氧化锌(ZnO)材料作为一种直接带隙半导体,其室温下具有3.37 eV的禁带宽度和高达60 meV的激子结合能,是一种实现室温下高效的紫外激光的候选材料,而且ZnO还具有原材料丰富,价格低廉,安全环保等优点。ZnO极易制备各种纳米结构,纳米ZnO材料由于高的结晶质量和量子效应的作用,在发光和紫外探测上具有重要应用潜力。ZnO微米结构与纳米结构相比,同样具有单晶的结晶质量,并且具有更易于操作及制备器件的尺寸、自带谐振器等优点。本文围绕了ZnO微米线的可控生长和光电器件的制备进行了研究探索,并取得了如下的创新性研究成果: 1. 利用化学气相沉积(CVD)的方法制备出截面为四边形的氧化锌微米线,这种微米线具有F-P谐振腔模式,并通过生长温度实现了对尺寸的初步可控生长。我们使用Ag纳米颗粒对ZnO微米线进行了包覆,利用Ag等离子体基元与微米线F-P腔模式发生强耦合,光致发光增强效果可以高达102倍。 2. 制备了基于单根ZnO微米线的绿光电致发光器件,其中心波长位于500 nm,通过Au纳米颗粒对表面的修饰,使缺陷态的发光产生了能量转移,变为中心波长位于600 nm的红光电致发光器件,实现了对发光峰位和颜色的调制作用,并以此为基础通过模板控制Au纳米颗粒的分布,制备出能够同时发出红绿两种光的单根微米器件。 3. 利用CVD一步生长的方法制备出高结晶质量的ZnO-Ga2O3核壳微米线, 氧化锌的晶格能在6-8个原子层的范围内快速过渡到氧化锌的晶格,而且界面处无明显缺陷。利用该核壳微米线制备出高性能的日盲(200-280 nm)波段的雪崩探测器,该器件在6 V 下254 nm处的响应度可达1.3×103 A/W,探测率为9.91×1014 cm·Hz1/2/W,响应时间小于20 μs,主要性能高于目前商业Si雪崩二极管。该器件在-10 V偏压下有高达5.77×105 %的外量子效率,正的温度系数证明该器件的高增益来源于雪崩倍增效应。
英文摘要Ultraviolet photoelectric device have a widely application in green lighting, optical communication and ultraviolet detection. II-VI group semiconductor zinc oxide (ZnO) is a wide direct band semiconductor with a band gap of 3.37 eV and an exciton binding energy as large as 60 meV, which could act as a promising candidate material for ultraviolet laser diode. And ZnO is also an abundant, inexpensive and experimental material. ZnO can be easy to synthesize many different kinds of nanostructures, and for the good crystal quality and quantum effect of these nanostructures, they have more important potential in the application of luminescence and ultraviolet detection device. ZnO microstructures not only possess high crystal quality, but also have a more appropriate size of operating and fabricating device than nanosturctures. Meanwhile, ZnO microstructures can be act as a micro laser cavity. In this work, we focus on the controllable growth of the ZnO microstructure and the fabrication of its photoelectric device, and made the following innovative research results: 1. We synthesize the ZnO microwires with the quadrate cross section by a chemical vapor deposition method, which size can be controlled by the growth temperature. Ag nanoparticles were used to enhance the photoluminescence of ZnO microwires. For the optical restriction of the F-P cavity mode of the microwires, the photoluminescence can be a 102 times enhanced in ultraviolet wave band after Ag nanoparticle sputtering on the ZnO microwires. 2. We fabricate an electroluminescence device with green emission centered on 500 nm based on the microwires. Once the Au nanoparticles are sputtered on the surfaces of ZnO microwires, the electroluminescence of the ZnO microwires will shift from green emission to red emission centered on 600 nm, and this is due to that there is an energy transfer process from the surface defects of ZnO microwires to the Au nanoparticles under the electric driven. The distribution of Au nanoparticles on the microwires can be controlled under a template, and dual emissions have been observed by sputtering Au nanoparticles on the ZnO microwires periodically. 3. We synthesize ZnO-Ga2O3 core-shell microwires with high crystal quality by a simply one-step chemical vapor deposition methods, in which the ZnO crystal lattice could abruptly switch to the Ga2O3 crystal lattice within 6-8 atomic layers without noticeable structure defects at the interface between two materials. High-performanced solar-blind (200-280 nm) avalanche photodetectors (APDs) were fabricated based on the ZnO-Ga2O3 core-shell microwires. The responsivity can reach up to 1.3×103 A/W under -6 V. Besides, the corresponding detectivity was as high as 9.91×1014 cm·Hz1/2/W. The device also had a fast response with the rise time shorter than 20 μs. The quality of the detectors can be comparable or even higher than the commercial Si APD in solar-blind waveband. It is found that the external quantum efficiency can be as high as 2.53×106 % under -10 V bias. A positive temperature coefficient confirmed that the high internal gain of our photodiode was originated from the avalanche multiplication.
公开日期2015-12-24
内容类型学位论文
源URL[http://ir.ciomp.ac.cn/handle/181722/48958]  
专题长春光学精密机械与物理研究所_中科院长春光机所知识产出
推荐引用方式
GB/T 7714
赵斌. 基于ZnO微米线发光及紫外探测器件的研制[D]. 中国科学院大学. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace